
MiPai: using the PP-Index to build an
efficient and scalable similarity search system

Andrea Esuli
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche - Italy
andrea.esuli@isti.cnr.it

Abstract—MiPai is an image search system that provides
visual similarity search and text-based search functionalities.
The similarity search functionality is implemented by means of
the Permutation Prefix Index (PP-Index), a novel data struc-
ture for approximate similarity search. The text-based search
functionality is based on a traditional inverted list index data
structure. MiPai also provides a combined visual similarity/text
search function.

I. INTRODUCTION

MiPai1 is an image search system that provides visual
similarity search and text-based search functionalities on the
CoPhIR collection [1], consisting of 106 million images
crawled from the Flickr photo sharing website. Each image
is represented by five MPEG-7 visual descriptors, used to per-
form visual the similarity search, and it has structured textual
content associated (e.g., title, description, tags, comments),
used by the text search component.

This paper details the architecture of MiPai, its search
functions and Web interface, and also introduces its core data
structure, the PP-Index, a novel data structure that allows to
build efficient and scalable similarity search services.

II. THE PP-INDEX

The Permutation Prefix Index (PP-Index), is an approximate
similarity search data structure that belongs to the family of the
permutation-based indexes (PBI), independently introduced by
Amato and Savino [2], and Chavez et al. [3].

The intuition behind PBIs is that two similar objects have
a similar view of the surrounding world, i.e., they are likely
to see the elements of a set of reference objects in the same
order of distance, according to a given distance function that
models the concept of similarity.

More formally, given a set of objects D, from a domain O,
and a distance function d : O × O → R+, the PP-Index is
built by computing a permutation prefix Πl

o for each o ∈ D.
Πl

o is the sequence of the identifiers of the l closest reference
objects to o with respect to d, determined on a set of reference
objects R = {r0, . . . , r|R|−1} ⊂ O. In our case, R is actually
composed by randomly selected elements of D.

A prefix tree T , kept in main memory, stores all the
permutation prefixes for objects in D. A data storage file,
kept of disk, contains the relevant data for each object (i.e., its
identifier and the information required to compute its distance

1http://mipai.esuli.it/

to any object in O), sequentially written following the order
resulting from an ordered visit of T .

The key difference between the PP-Index and the other PBI
methods, is that [2] and [3] use the permutation space as a
transformed similarity space, used to estimate the distance
order between objects and the query, while the PP-Index uses
permutation prefixes for a very fast determination of a small
set of candidate objects, from which the best elements to be
included in the result are selected using the original distance
function.

Specifically, given a k-NN query for an object q ∈ O, Πl
q is

computed and it is used to search for the longest prefix match
in T whose subtree points to at least z candidate objects. The
k-NN result is computed on such subset of z′ > z candidate
objects. The key advantage of this method is that the z′ objects
are all stored in adjacent positions of the data storage file, thus
allowing extremely efficient data access, typically resulting in
a single read operation.

Various optimizations can be applied to the prefix tree
in order to reduce its memory occupation [4]. A specific
optimization for the PP-Index, applicable when the z is fixed,
consists of reducing all the subtrees that point to less than
z objects to a single leaf node, given that none of such
subtrees will be ever selected by the search function. This
is a crucial optimization that allows to drastically reduce the
memory occupation of the prefix tree T , allowing scalability to
very large collections and/or to keep multiple index instances
loaded at the same time on a single computer. For example,
for an index built using the first 100 million images of the
CoPhIR collection, the optimization of the prefix tree for a
value z = 1000 reduces its memory occupation from 354.5
MB to just 6.5 MB.

The above described search process is very efficient. Pro-
cessing a 100-NN query on a PP-Index built on the entire
CoPhIR collection has an average time cost of 0.239 seconds,
measured on a test set of 100 randomly selected images
from CoPhIR, held out from indexed data. The resulting
effectiveness is relatively low, with an average 18.3% recall
and 8.1% relative distance error2 (RDE) [5].

2Recall(k) =
|Dk

q∩P k
q |

k
RDE(k) = 1

k

∑k

i=1

d(q,P k
q (i))

d(q,Dk
q (i))

− 1

where Dq is the list of the elements of D sorted by their distance d(,) with
respect to q, Dk

q is the list of the k closest elements, P k
q is the list returned

by the algorithm, and Lk
q (i) returns the i-th element of the list L.

|indexes|
1 2 4 8

R
D
E
(k
)

0.00

0.02

0.04

0.06

0.08

0.10

1 2 4 8

R
ec
al
l(k
)

0.0

0.2

0.4

0.6

0.8

1.0

k=100
k=10
k=1

Fig. 1. Multiple index search strategy on the 100M index, using |R| = 1, 000
and z = 1, 000.

Fortunately, given such “weak searcher”, it is easy to boost
its effectiveness by adopting two simple strategies:

Multiple query strategy: pairs of elements of Πl
q can be

swapped in order to generate additional permutation prefixes
to be passed to the search function, thus retrieving additional
candidates among the objects assigned to permutations neigh-
boring the one representing the query. This strategy can be
easily parallelized on multi-processor hardware.

Multiple index strategy: multiple indexes can be built on the
same collection D, by using different sets of reference objects
R, producing different mappings of objects to permutations.
This increases the probability of performing a complete explo-
ration of the regions of the similarity space around the query.
This strategy can be easily parallelized by distributing the
indexes over different machines. Moreover, this strategy allows
to support fault-tolerance, thanks to data replication, and load-
adaptation, e.g., by varying the number of indexes/machines
dedicated to answer a specific query in proportion to the
current load of the system.

Figures 1 and 2 show the effectiveness improvements mea-
sured by separately applying the two strategies, which results
in an average 74% recall, for k = 100, when issuing the
queries on eight indexes. The search cost time is linearly
proportional to the number of queries/indexes involved into
the search process.

The effectiveness can be obviously further improved by
combining the two strategies. For example, an eight in-
dexes/eight queries configuration produces almost exact results
(97% recall, k = 100) in an average 12.45 second time, with
a completely sequential execution of the queries, on the demo
machine described in Section III.

1 2 4 8

R
ec
al
l(k
)

0.0

0.2

0.4

0.6

0.8

1.0

k=100
k=10
k=1

|queries|
1 2 4 8

R
D
E
(k
)

0.00

0.02

0.04

0.06

0.08

0.10

Fig. 2. Multiple query search strategy on the 100M index, using |R| = 1, 000
and z = 1, 000.

III. MIPAI ARCHITECTURE

The MiPai system has a modular structure, in which each
module is represented by a Web service or an user application
(see Figure 3).

PP-Index search Web service: it provides the visual simi-
larity search functionality on a single PP-Index structure. As
described in Section II, the effectiveness/efficiency trade-off
on a single index can be tuned by adopting a multiple query
search strategy and by varying the z value. The similarity
measure adopted for the experiments and for the demo system
is a linear combination of the five similarity measures defined
for the MPEG-7 visual descriptors that are associated to
CoPhIR images, using the weights proposed in [6].

On-line image processing Web service: it extracts the
MPEG-7 visual descriptors from a given image. Images can
be uploaded by users from their PCs or be submitted as URLs
pointing to external sites. In the latter case the service connects
to the address specified by the URL and downloads the image.
The service also provides a cache system for already-processed
images.

Text-based search Web service: it manages an inverted list-
based index of all the structured textual content associated
to CoPhIR images (e.g., title, description, tags, comments). It
uses a rich query language that allows to perform field-specific
search, using standard and/or operators and also more complex
phrase and proximity operators, or combinations of them. The
Web service is implemented using the Scheggia3 search library.

MiPai Web service: it is the core component of the MiPai
system. It gathers all the available resources, also in multiple
instances, and manages them in order to implement the search
functionalities, e.g., producing more accurate results by using
a multiple index search strategy, or combining the results of

3http://www.esuli.it/scheggia/

Multiple
index search

Combined
search

PP-Index Search Web Service

Data Storage (Disk)

Prefix Tree
(RAM)

Multiple
query search

On-line Image
Processing Web Service

- MPEG-7 feature extractor.
- Caching of images and features.

MiPai Web Service

- Query dispatcher and result collector.
- Multiple index search (PP-Index).
- Combined visual similarity/text search.
- Index collection management.
- Load management.

Web Interface Desktop Client

Text-based Search
Web Service

- Inverted list-based index.
- Multiple field data.
- Rich query syntax.

Fig. 3. Architecture of the MiPai system.

visual similarity search and text-based search. A MiPai Web
service can also connect to other instances of MiPai Web
services, thus acting as a meta-search engine.

Web interface: publishes the search functionalities to the
user, using a simple user interface (see details in Section IV).

Desktop client: a search client application that could re-
motely connect to any instance of a MiPai Web service.

The modularity of the system allows to rapidly adapt its
configuration to the operating environment, e.g., supporting
the deployment of the system over a distributed system, or
handling dynamically available resources.

All the above described components are implemented in c#
and can run on both Windows and Linux platforms.

The current MiPai demo has all of its components running
on a single desktop PC, with a 4 cores 2.4 GHz CPU, a single
1 TB disk, and 4 GB RAM. The multiple index configuration
is composed by eight PP-Indexes, each one covering the entire
CoPhIR collection. It is worth to note that all the eight indexes
are simultaneously loaded on the machine, further showing
scalability the potential of the PP-Index.

The time required to build a single PP-Index is 12.5 hours.
This value is in line with the time required to index the textual
content of the entire CoPhIR collection, which amounted to
14 hours.

Any similarity search request is processed by adopting a
multiple index strategy on all the eight indexes, and it is
performed by sequentially searching on each index. On each
index, the search process uses a two-query search strategy
with z = 1, 000, for the “quick” configuration (see Section
IV), or a four-query strategy, z = 10, 000, for the “accurate”
configuration.

IV. MIPAI WEB SEARCH INTERFACE

The MiPai Web interface is designed to free users from
having to deal with PP-Index-specific search parameters, pre-
senting them a simplified interface.

The user can start a visual similarity search by selecting
one of the random images proposed by the system or, more
relevant, can submit the URL of an image on the Web or
upload a personal image. In the latter two cases the image
processing Web service is used to extract the MPEG-7 data
on the fly.

MiPai provides also a JavaScript bookmarklet which allows
the user, while visiting any Web page, to quickly submit any
image in that page for search on MiPai.

The user can start a search by submitting a textual query.
The text-based search can also be used after a visual similarity
search, in order to perform a combined visual/textual search. In
this case the z′ candidates retrieved by the PP-Index are ranked
by a combined measure that averages the numeric quantities
representing the distance of any object from the visual query
and the degree of match of its associated textual content with
the textual query.

Results are shown in a grid of 15 images, with a maximum
of 100 images per query. Any image in results can be clicked
in order to reach the original image on Flickr, or used as query
in a new search. The size of images can be varied.

Instead of burdening the user with complex search parame-
ters, MiPai gives the user the choice between two performance
profiles, “quick” or “accurate”, that correspond to different
parameter settings for the search on the various data structures,
as already detailed in Section III. Such parameters are also
adapted to the load of the system, in order to always guarantee
its responsiveness.

The user can also select an “expanded” view of the interface,
which allows to selectively enable/disable any of the five visual
descriptors, determining the ranking of the z′ candidates by
a differently-balanced distance measure (e.g., in order to give
more relevance to edges over color distribution), and to give
feedback on the quality of each result (currently only logged
into a db).

REFERENCES

[1] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego, T. Piccioli, and
F. Rabitti, “CoPhIR: a test collection for content-based image retrieval,”
CoRR, vol. abs/0905.4627, 2009.

[2] G. Amato and P. Savino, “Approximate similarity search in metric
spaces using inverted files,” in INFOSCALE ’08, Proceeding of the 3rd
International ICST Conference on Scalable Information Systems, Vico
Equense, Italy, 2008, pp. 1–10.

[3] E. Chávez, K. Figueroa, and G. Navarro, “Effective proximity retrieval
by ordering permutations,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), vol. 30, no. 9, pp. 1647–1658, 2008.

[4] D. R. Morrison, “Patricia—practical algorithm to retrieve information
coded in alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514–534, 1968.

[5] M. Patella and P. Ciaccia, “The many facets of approximate similarity
search,” SISAP ’08, 1st International Workshop on Similarity Search and
Applications, pp. 10–21, 2008.

[6] M. Batko, P. Kohoutkova, and P. Zezula, “Combining metric features in
large collections,” SISAP ’08, 1st International Workshop on Similarity
Search and Applications, pp. 79–86, 2008.

