PP-Index: Using Permutation Prefixes for
Efficient and Scalable Similarity Search
(Extended Abstract)

Andrea Esuli

Istituto di Scienza e Tecnologie dell’Informazione - CNR
andrea.esuli@isti.cnr.it

Abstract. The Permutation Prefix Index (PP-Index)’ is a data struc-
ture that allows to perform efficient approximate similarity search. It is
a permutation-based index, which is based on representing any indexed
object with “its view of the surrounding world”, i.e., a list of the elements
of a set of reference objects sorted by their distance order with respect
to the indexed object. In its basic formulation, the PP-Index is biased
toward efficiency. We show how the effectiveness can reach optimal lev-
els just by adopting two “boosting” strategies: multiple index search and
multiple query search, which both have nice parallelization properties.
We study both the efficiency and the effectiveness properties of the PP-
Index, experimenting with collections of sizes up to one hundred million
objects, represented in a very high-dimensional similarity space.

1 Introduction

The similarity search model [2] is a search model in which, given a query ¢
and a collection of objects D, all belonging to a domain O, the objects in D
have to be sorted by their similarity to the query, according to a given distance
function d: O x O — R™T (i.e., the closer two objects are, the most similar they
are considered). The k-top ranked objects are returned (k-NN query), or those
within a maximum distance value r (range query).

The well known “curse of dimensionality” [3] is one of the hardest obsta-
cles that researchers have to deal with when working on this topic. Along the
years, such obstacle has been attacked by many proposals, using many different
approaches. The earliest and most direct approach to the problem consisted in
trying to improve the data structures used to perform ezact similarity search.
Research moved then toward the exploration of approximate similarity search
methods, mainly proposing variants of exact methods in which some of the con-
straints that guarantee the exactness of the results are relaxed, trading effective-
ness for efficiency.

Approximate methods [4] that are not derived from exact methods have been
also proposed. Recently, the research on permutation-based indexes (PBI) [5, 6]
has shown a another promising direction toward scalable data structures for
similarity search.

! This is an extended abstract version of [1].

2 The PP-Index

The Permutation Prefix Index (PP-Index) belongs to the family of the permuta-
tion-based indexes (PBI), independently introduced by Amato and Savino [5],
and Chavez et al. [6]. The intuition behind PBIs is that two similar objects have
a similar view of the surrounding world, i.e., they are likely to see the elements
of a set of reference objects in the same order of distance, according to a given
distance function that models the concept of similarity.

The key difference between the PP-Index and previously presented PBI meth-
ods [5, 6] is that the latters use permutations in order to estimate the real distance
order of the indexed objects with respect to a query, while the PP-Index uses
the permutation prefixes in order to quickly retrieve, in a hash-like manner, a
reasonably-sized set of candidate objects that are likely to be at close distance
to the query, then leaving to the original distance function the selection of the
best elements among the candidates.

More formally, given a set of objects D, from a domain O, and a distance
function d : © x O — R*, the PP-Index is built by computing a permutation
prefiz IT! for each o € D. IT! is the sequence of the identifiers of the I closest
reference objects to o with respect to d, determined on a set of reference objects
R = {ro,...,mg-1} C O, e.g., R could consist of a random sampling of the
elements of D.

Data structures: The PP-Index data structures consists of a prefix tree
kept in main memory, indexing the permutation prefixes and keeping pointers
to a data storage kept on disk, which stores data blocks that contains (i) the
information required to univocally identify any object o; € D and (ii) the essen-
tial data used by the function d in order to compute the similarity between the
object 0; and any other object in 0. Data blocks are sequentially sorted in the
data storage by the alphabetical order of their permutation prefixes, where the
alphabet is defined by the identifiers of the reference objects, ordered by their
natural value, i.e., the first letter of the alphabet is 0 and the last is |R| — 1.
Figure 1 shows an example list of permutation prefixes generated for a set of
objects and the resulting PP-Index.

Basic search function: Given a k-NN query for an object ¢ € O, the basic
search function of the PP-Index consists of computing the permutation prefix
Hzlj and searching for the longest prefix match in the prefix tree whose subtree
points to at least z candidate objects. Then the k-NN result is computed on
such subset of 2z’ > z candidate objects, using the distance function d. Given
the order of the data blocks in the data storage, the 2z’ objects are all stored
in adjacent positions of the data storage, thus allowing an extremely efficient
sequential access to data.

Making an analogy with the inverted list indexing model for text, we can con-
sider each indexed object o; as a document composed by a single word w,, i.e., the
permutation prefix IT!. The data storage holds the posting lists that, in the PP-
Index case, are sequences of data blocks related to objects that are represented
by the same permutation prefix IT'. The prefix three in memory indexes the lez-
icon of permutation prefixes, i.e., all the distinct permutation prefixes extracted

from the indexed objects, in order to optimize the prefix queries performed on
the lexicon by the PP-Index search function. From this analogy it is easy to
see how the indexing process of the PP-Index can be efficiently parallelized and
distributed over multiple processors/machines using, e.g., a MapReduce frame-
work [7] in which the Map function generates the permutation prefixes and the
Reduce function sorts and merges the data blocks with respect to the associated
permutation prefix.

Prefix tree

Index characteristics

|D|=10, |R|=6, I=3

Permutation prefixes
Wo, =<1, 3, 2> wo, =<2, 3, 0> main memory
Wo, =<5, 2, 3> Wo,=<4, 1, 3> seoqdary memory
Wo, =<1, 3, 2> wo, =<4, 1, 3>
Wo, =<1, 3, 4> wo, =<5, 2, 3>
Wo, =<1, 3, 2> wo, =<4, 3, 5> Data storage

¢ [| 4 y Y
‘0‘, ..4‘04 ‘ 0Os... ‘0{, ...‘0‘ ...‘0; ...‘05 .“[09 4..‘01 ...[07 ‘

Fig. 1. Sample data and resulting PP-Index data structures.

Improved search function: The above described “basic” search function
is strongly biased toward efficiency. The PP-Index allows to tune the effective-
ness/efficiency trade-off by adopting the two following “boosting” strategies:

Multiple indez: t indexes are built, based on different R ... R; sets of refer-
ence objects. This is based on the intuition that different reference object sets
produce many differently shaped partitions of the similarity space, resulting in
a more complete coverage of the area around queries.

A search process the using multiple index strategy can be parallelized by dis-
tributing the indexes over multiple machines, or just on different processes/CPUs
on the same machine.

Multiple query: at search time, p additional permutation prefixes from the
query permutation prefix IT fz are generated, by swapping the position of some of
its elements. The geometric rationale is that a permutation prefix 7! differing
from another permutation prefix Ugl! for the swap of two adjacent/near elements
identifies an area Vi of the similarity space adjacent/near to VHL' Performing
a search with additional “swapped” permutation prefixes extends the search
process to areas of the search space that are likely to contain relevant objects.

In our experiments the swapping heuristic consists in sorting all the reference
objects pairs appearing in the permutation prefix by their difference of distance
with respect to the query object. Then the swapped permutation prefixes are

generated by first selecting for swap those pairs of identifiers that have the
smallest distance difference.

3 Experiments

3.1 The CoPhIR data set

We have run our experiments on the CoPhIR? [8] data set, which consists of a
crawl of 106 millions images from the Flickr photo sharing website. Five MPEG-7
visual descriptors are associated to each image.

We have randomly selected 100 images from the collection as queries and we
have run experiments using the first million (1M), ten millions (10M), and 100
millions (100M) images from the data set. We have used the remaining 6 million
images as held-out data for some preliminary experiments.

We have run experiments on a linear combination of the five distance func-
tions for the five descriptors. As the weights for the linear combination we have
adopted those proposed in [9].

3.2 Configurations and evaluation measures

We have explored the effect of using different sized R sets, by running the exper-
iments using three R set sizes consisting of 100, 200, 500, and 1,000 reference
objects. We have adopted a random selection policy of objects from D for the
generation of the various R sets, following the results of [6], which reports the
random selection policy as a good performer. In all the experiments we have used
a fixed value of [= 6. As the results show, the determination of the value [is not
a critical choice, as long as it is large enough to produce a detailed partitioning
of objects in the permutation prefix space.

We have tested a basic configuration based on the use of a single index
and the basic search function described in Section 2, i.e., an efficiency-aimed
configuration. We have then tested the use of multiple indexes, on configurations
using 2, 4 and 8 indexes, and also the multiple query search strategy by using a
total of 2, 4, and 8 multiple queries, i.e., generating 1, 3, and 7 additional queries
from the original query permutation prefix. We have also tested the combination
of the two multiple index/multiple query strategies. We have optimized the z
value on the held-out data, determining and optimal z = 1,000, which has
produced a good trade-off in effectiveness/efficiency.

The experiments have been run on a desktop machine, equipped with a 2.4
GHz CPU, a single 1 TB 7,200 rpm SATA disk, and 4 GB RAM. All the ex-
periments have been run in a single-threaded application, with a completely
sequential execution of the multiple index/query searches.

We have evaluated the effectiveness of the PP-Index by adopting a ranking-
based measure and a distance-based measure [4], recall and relative distance

2 http://cophir.isti.cnr.it/

0.20 o
1000000 —
? o)) -o- 100M
; | - . . -4- 10M
2 100000 e--° N = § 1M
= T 0 -
: 7 o 3 ©-—__
: o o . & 0.10 - . <
w = 2----Toeg
'g 1000 7057 o'
§ o oM 0.05 -
100 + -
T g I
100 200 500 1000 0.00 ' : I I
R 100 200 500 1000
0.300 b |RI
. 020 [G- oo <
s o : -5 084 .. 1M
) o —— 1M
= o <
-8 0.150 N é]
- @
8 0.100 —©- 100M g 7
3 -4- 10M :
0.050 — —— 1M o2 G_ﬂ\e\e
0.000 T T T El——--;‘_';@'—‘.‘;:'_'.'—':g: :::: B
100 200 500 1000 0.0 -
. o
A 100 200 500 1000
IRI

Fig. 2. Indexing time and search time
w.r.t. to the size of R and the data set
size (search with z = 1,000 and k& = 100,
single index, single query).

Fig. 3. Effectiveness with respect of the
size of R set, for k = 100 and z = 1,000
(single index, single query).

error, defined as:

D¥n PF
Recall(k) = % (1)

1 o~ d(g, PE(i))
RDE(k) = - ; a0, DEQ) 1 (2)
where D, is the list of the elements of D sorted by their distance with respect to
q, D§ is the list of the k closest elements, P(f is the list returned by the algorithm,
and LE (i) returns the i-th element of the list L.
In order to evaluate the efficiency of the PP-Index we have measured: the in-
dexing time, the main memory and disk occupation, the search time, the number
of data blocks read from disk, and the sequentiality of disk accesses.

3.3 Results

Figure 2 shows the almost linear proportion of the index time cost with respect
to both the size of the reference object set size and the data set size. With respect
to the indexing times we note that:

— the twelve hours time, required to build the 100M index for the |R| = 100, is
in line with the fourteen hours we have measured to build a text search index
on the descriptions and the comments associated with the indexed images;

— this time refers to a completely sequential indexing process, not leveraging
on the parallelization possibilities of the PP-Index.

0.08 - 0081 @ o l;:lgo
N —— k=1
2 0.06 = 0.06 =] ~.
i irg O
2 004 1 S 004
0.02 - 0.02 -
0.00 0.00
1.0 1.0
0.8 - 0.8
< o6 < o6 |
E |
& o041 2 04
02 02 4
0.0 : | : | 0.0 ; : : :
1 4 8 1 2 4 8
lindexes| |queries|
Fig. 4. Effectiveness of the multiple in- Fig. 5. Effectiveness of the multiple
dex search strategy on the 100M index, query search strategy on the 100M index,
using |R| = 1,000 and z = 1, 000. using |R| = 1,000 and z = 1, 000.

Figure 2 also plots the search time with respect to the size of R and the data
set size, for k = 100 (single index, single query). For the worst case, |R| = 100,
we have measured an average 0.239 seconds search time on the 100M index.

We have measured the effectiveness of the PP-Index for various sizes of the
R set and the data set size, using a single-index/single-query configuration, and
k =100 (Figure 3). Effectiveness values improve with the increase of |R| for the
10M and 100M data sets, while the 1M data set shows the inverse tendency, due
to a over-partitioning of the space. For |R| = 1,000 we observe almost the same
relative error (~ 8%), for the three data set sizes. The 100M recall curve is very
close to the 10M recall curve, with an average difference of 3%.

The most efficient (0.210 seconds answer time) configuration of PP-Index has
obtained a 18.3% recall and 8.1% RDE on the 100M data set, for k = 100.

Figures 4 and 5 show respectively the effects on effectiveness of the multiple
index and multiple query strategies, for three k values. For the multiple index
strategy we have measured a great improvement on both measures, reaching
a 74% recall (four times better than the single-index case) and a 0.7% RDE
(eleven times better) for the eight index case. Just by adding a single index to
the original one we have measured a factor two improvement of both measures.

As expected, the search cost for the multiple index strategy is exactly pro-
portional to the number of explored indexes. For the above mentioned eight
index configuration we have measured an average 1.72 seconds search time, for a
completely sequential search process. The four index configuration scores a 52%
recall (67% for k = 10) and just a 2.2% RDE with a sub-second answer time. It
is relevant to note that, given the small memory occupation of the compressed

—-©- 100M 1e3
8e-3 _G- 10M N
—-— 1M -~ 100M
< 6e-3 4 /,o 8e4 4 5. qom
o Ol T o] M _O---0
@ 4e-3 - o7 T ~g =
.
o
_-o |
2e-3 <3 @ 4e-4
=l B----- B----g---B------g---- | 2e-4 -
0 Y T A P
1 2 5 10 20 50 100
k 0
1.00 —_—
0.98 4 B G----B----B------ B----0O
1.00
0.96 s 00
0.94
< 0.92 0.99 -
T 0.90 4 -0~ 100M
S 0. b X098 O s
“‘8'227 o o---© e E T 0
' o R © 0.97 -
0.84 O~ __ x
> ~o---0o -0~ 100M
080] 096 4 -~ 10M
0.80 : . . . : : . ol
1 2 5 10 20 50 100
k 0.95 : : :
1 2 5 10 20 50 100

Fig. 6. Effectiveness of the combined
multiple query and multiple index search Fig. 7. Combined multiple query and

strategies, using eight queries and eight multiple index strategies, using eight
indexes, on various data set sizes, using queries and eight indexes, using |R| =
|R| = 100, and z = 1, 000. 1,000 and z = 1,000.

prefix tree, we have been able to simultaneously load eight 100M indexes into
the memory, thus practically performing search on an 800 million objects index,
though with replicated data, on a single computer.

The multiple query strategy also shows relevant improvements, though of
minor entity with respect to the multiple index strategy. This is in part motivated
by the fact that many of the queries, generated by permuting the elements of
the original query permutation prefix, actually resulted in retrieving the same
candidates of other queries®. On the 100M index, for | R| = 1,000, on the average,
1.92 distinct queries to be effective in retrieving candidates for the two queries
configuration, 3.18 queries for the four queries configuration, and 5.25 queries for
the eight queries configuration. These values directly reflect the average search
cost with respect to the single query configuration, i.e., only the effective queries
(44.5 on average) produce a disk access to read candidates from data storage.

Figures 6 and Figure 7 show the effectiveness of the combined multiple query
and multiple index search strategies, using eight queries and eight indexes, re-
spectively for |R| = 100 and for |R| = 1,000. We have measured almost the
same search times, for a completely sequential search process, for the two cases
(12.45 seconds for |R| = 1,000). The case |R| = 100 produces a 82.5% recall
and a RDE < 0.1% on the 100M index, while the smaller data set sizes it scores
almost exact results (recall > 96%). The case |R| = 1,000 produces almost exact
results, with a recall > 97% and a RDE < 0.01%.

3 Such candidates are read only once from the data storage.

4 Conclusions

We have presented the PP-Index, an approximate similarity search data struc-
ture based on the use of short permutation prefixes. The PP-Index has interesting
parallel processing properties both at indexing time and at search time.

We have evaluated the PP-Index on a very large and high-dimensional data
set. Results show that it is both efficient and effective in performing similarity
search, and it scales well to very large data sets. We have shown how a limited-
resources configuration obtains good effectiveness results in less than a second,
and how almost exact results are produced in a relatively short amount of time.
Moreover, the parallel processing capabilities of the PP-Index allow to distribute
the search process in order to further improve its efficiency.

The PP-Index has been already used to build a performing similarity search
system? [10]. By mining the query log of the service we plan to investigate new
policies for the definition of the R set, e.g., clustering queries and selecting the
most representative ones of each cluster.

References

1. Esuli, A.: Pp-index: Using permutation prefixes for efficient and scalable approx-
imate similarity search. In: Proceedings of the 7th Workshop on Large-Scale Dis-
tributed Systems for Information Retrieval (LSDS-IR09). (2009) 1724

2. Jagadish, H.V., Mendelzon, A.O., Milo, T.: Similarity-based queries. In: PODS
’95: Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, San Jose, US (1995) 36-45

3. Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.: Proximity searching in
metrix spaces. ACM Computing Surveys 33(3) (2001) 273-321

4. Patella, M., Ciaccia, P.: The many facets of approximate similarity search. SISAP
’08, 1st Int. Workshop on Similarity Search and Applications (2008) 10-21

5. Amato, G., Savino, P.: Approximate similarity search in metric spaces using in-
verted files. In: INFOSCALE ’08: Proceeding of the 3rd International ICST Con-
ference on Scalable Information Systems, Vico Equense, Italy (2008) 1-10

6. Chéavez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 30(9) (2008) 1647-1658

7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1) (2008) 107-113

8. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.:
CoPhIR: a test collection for content-based image retrieval. CoRR abs/0905.4627
(2009)

9. Batko, M., Kohoutkova, P., Zezula, P.: Combining metric features in large collec-
tions. SISAP ’08, 1st International Workshop on Similarity Search and Applica-
tions (2008) 79-86

10. Esuli, A.: MiPai: using the PP-Index to build an efficient and scalable similarity
search system. In: SISAP ’09, Proceedings of the 2nd International Workshop on
Similarity Search and Applications, Prague, CZ (2009)

4 http://mipai.esuli.it/

