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Using micro-documents for feature selection: The case of ordinal text classificationq
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a b s t r a c t

Most popular feature selection methods for text classification such as information gain (also known as
‘‘mutual information’’), chi-square, and odds ratio, are based on binary information indicating the pres-
ence/absence of the feature (or ‘‘term’’) in each training document. As such, these methods do not exploit
a rich source of information, namely, the information concerning how frequently the feature occurs in the
training document (term frequency). In order to overcome this drawback, when doing feature selection we
logically break down each training document of length k into k training ‘‘micro-documents’’, each consist-
ing of a single word occurrence and endowed with the same class information of the original training
document. This move has the double effect of (a) allowing all the original feature selection methods based
on binary information to be still straightforwardly applicable, and (b) making them sensitive to term fre-
quency information. We study the impact of this strategy in the case of ordinal text classification, a type
of text classification dealing with classes lying on an ordinal scale, and recently made popular by appli-
cations in customer relationship management, market research, and Web 2.0 mining. We run experi-
ments using four recently introduced feature selection functions, two learning methods of the support
vector machines family, and two large datasets of product reviews. The experiments show that the use
of this strategy substantially improves the accuracy of ordinal text classification.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Text management tasks such as text search, text clustering, and
text classification, are usually tackled by representing the textual
documents in vectorial form. The resulting vector spaces are al-
ways characterized by a high dimensionality (often in the range
of the tens, sometimes hundreds of thousands dimensions), since
words (or word stems) are normally used as features, and since
several tens of thousands of them occur in any reasonably-sized
document space.1 This very high dimensionality is not terribly prob-
lematic in text search, where the most fundamental operation (com-
puting the distance between two vectors in the vector space) can be
performed quickly, thanks to the sparse nature of the two vectors. It
is instead problematic in other tasks involving supervised or unsu-
pervised learning, such as text classification or clustering.

For instance, many supervised learning algorithms often used
for text classification, such as neural networks, do not scale well
to large numbers of features, and even the learning algorithms that

do scale well have a computational cost at least linear in the
dimensionality of the vector space. While this negatively impacts
on efficiency, accuracy suffers too, since if the ratio jTrj/jWj of the
number jTrj of training examples to the number jWj of features is
low, overfitting may occur, which typically leads to suboptimal
classification accuracy.

For all these reasons, several techniques for reducing the
dimensionality of a vector space in text learning tasks have been
investigated, the main one being feature selection (see e.g. Forman,
2007; Huan & Hiroshi, 2007; Isabelle & Elisseeff, 2003; Maghsoodi
& Homayounpour, 2011; Mengle & Goharian, 2009; Yang & Peder-
sen, 1997). This latter consists in identifying a subset S !W of the
original feature set W such that jSj " jWj (with n = jSj/jWj being
called the reduction level) and such that S reaches the best compro-
mise between (a) the efficiency of the learning process and of the
classifiers (which is, of course, inversely proportional to jSj), and
(b) the accuracy of the resulting classifiers.

The idea that underlies feature selection is, of course, that the
most informative features must be retained in S while the least
informative ones must be discarded. Here, ‘‘informative’’ actually
means discriminating, in the sense that a feature tk is informative
for the task of classifying documents under class cj whenever its
presence (or absence) in a document di is a strong indicator of
the fact that di belongs to cj. For instance, athlete is an informa-
tive feature for class Sports (since it tends to occur more frequently
in documents about Sports than in other documents), while air is
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not (since it tends to occur with approximately the same frequency
in documents about Sports and in other documents).

In text classification, the most popular approach to feature
selection is the filter approach (John et al., 1994). By and large, this
consists of a greedy strategy in which a function f is applied to each
feature tk 2W in order to compute a real-valued score f(tk) that
represents its expected contribution to solving the classification
task. Only the jSj features with the highest f value are retained
and will thus play a role in the training and classification phases,
while the others are discarded from consideration.2

The most popular instances of function f above, such as point-
wise mutual information, chi-square, odds ratio, information gain
(also known as mutual information), bi-normal separation, and
the like, are based on binary information indicating the presence/
absence of the feature in each training document. For instance, in
pointwise mutual information, defined as PMIðtk; cjÞ ¼ log2

Pðtk ;cjÞ
PðtkÞPðcjÞ

,
the value P(tk) is the probability that feature tk occurs in a random
training document (P(cj) is instead the probability that a random
training document is a positive example of class cj). As such, PMI
and all the other above-mentioned functions do not exploit the
information concerning how many times tk occurs in a given train-
ing document; in other words, if di is a training example of cj,
whether it contains a single occurrence or multiple occurrences
of tk does not have an impact on PMI(tk,cj).

This is counterintuitive, since the number of times a term oc-
curs in a document (term frequency) is a rich source of information
that should not be neglected, as witnessed from the fact that the
history of term weighting in information retrieval (see e.g. Salton
& Buckley, 1988; Robertson & Walker, 1994; Zobel & Moffat,
1998) has clearly shown the superiority of weighting approaches
that make use of term frequency with respect to approaches that
do not use it.

In this paper we propose a filter approach to feature selection
for text classification which attempts to overcome this draw-
back. Rather than proposing new feature selection techniques
alternative to those which only accommodate binary information
(such as, e.g, PMI), our strategy is to stick to the latter ones but
modify the input which is presented to them, so that they re-
ceive term frequency information encoded as binary information.
The net effect will be that of allowing the use of all the standard
feature selection functions based on binary information, while at
the same time bringing to bear term frequency information. This
has evident advantages, in the fact that the ‘‘classical’’ feature
selection functions above are well-studied, have withstood the
test of time, and have proven to be the best performers in all
large-scale comparative text classification experimentation
carried out to date (see e.g., Forman, 2003; Yang & Pedersen,
1997).

As the testbed for our approach we use ‘‘ordinal’’ text classifica-
tion, a type of text classification (recently made popular by appli-
cations in customer relationship management, market research,
and social Web mining) which is concerned with classes lying on
an ordinal (i.e., totally ordered) rating scale; an example such set
of classes may be R = hDisastrous & Bad & Fair & Good & Excellenti
(as used, e.g., in rating products in customer reviews). We will test
this approach in the context of (non-ordered) ‘‘single-label’’ classi-

fication (i.e., when exactly one class must be attached to a given
document and the classes are not ordered) and ‘‘multi-label’’ clas-
sification (i.e., when zero, one, or more classes at the same time
may be attached to a given document) in a future paper.

This paper is organized as follows. In Section 2 we present our
l-document-based approach to feature selection, and we briefly
describe (in Section 2.2) the four feature selection methods for
ordinal text classification that we will use as testbeds. Section 3 re-
ports the results of experiments we have conducted using two
SVM-based learning methods and two large datasets of product re-
views. Section 4 concludes by pointing at avenues for future
research.

2. Feature selection for OC based on training l-documents

2.1. Encoding term frequency information as binary information

Let us fix some terminology. We take a document di to consist of
a sequence h1h2 ' ' ' hlengthðdiÞ of tokens; each token hz is the occur-
rence of a given word, which we denote by w(hz). Given a set Tr
of training documents, let us define H = {hz 2 dijdi 2 Tr} to be the
set of all tokens contained in Tr, and W = {w(hz)jhz 2H} to be the
set of unique words that occur at least once in at least one docu-
ment of Tr.

As indicated in the introduction, our approach to feature
selection for text classification does not consist in proposing
new feature selection techniques alternative to the classic ones.
It instead consists of modifying the input which is presented to
standard techniques based on binary information, so that they re-
ceive term frequency information ‘‘disguised’’ as binary
information.

Specifically, our approach consists of

1. breaking down (logically, and for the sole purpose of giving
input to the feature selection function) each training document
di into length(di) training ‘‘micro-documents’’ (hereafter: l-doc-
uments), each consisting of a single token and endowed with
the same class label(s) of the original training document;

2. feeding the resulting training l-documents (instead of the ori-
ginal documents) to the feature selection function of choice.

The net effect is that, if a training document di is a positive
example of class cj and contains q > 1 instances of term tk, the fea-
ture selection function will receive as input q positive training
examples of class cj and containing tk instead of a single one, thus
de facto increasing the importance of tk for class cj. As a result, in
the PMI formula of Section 1, P(tk) will no more denote the fraction
jfdi2Trjtk¼wðhzÞ; hz2digj

jTrj of training documents that contain tk, but the frac-
tion of trainingmicro-documents that contain tk, which in turn cor-
responds to the fraction jfhz jwðhzÞ¼tkgj

jHj of all tokens in H that are
instances of tk. Similarly, P(cj) will now denote the fraction of l-
documents that are positive instances of cj, that corresponds to
the fraction jfhz2cjgj

jHj of tokens that are positive instances of cj.
The consequence of this move is that feature selection functions

are now influenced not by the number of documents in cj that con-
tain an instance of tk, but by the number of instances of tk that are
contained in documents in cj. In practice, this has the effect of
allowing term frequency to have an impact on feature selection,
while at the same time allowing (thanks to the fact that tokens
are now considered documents in their own right) the use of the
‘‘classic’’ feature selection functions.

Example 1. Assume that Tr = {d1,d2,d3,d4,d5}; assume that d1 and
d2 are positive examples of class cj while d3, d4 and d5 are negative
examples of cj; assume that term tk occurs 4 times in each of d1 and

2 In this paper we do not consider so-called ‘‘wrapper’’ approaches to feature
selection since they suffer from computational problems due to they combinatorial
nature, and are thus used in practice only when the dimensionality of the original
feature space is small, which is never the case for text classification tasks. It is thus
completely inadequate for text learning tasks, in which the dimensionality of the
original feature space is typically O(105) or more (Interestingly, the literature on FS for
metric regression seems to have mostly, if not only, investigated ‘‘wrapper’’
approaches (Miller, 2002).); the same happens for bioinformatics applications such
as, e.g., gene selection for patient classification (Guyon, Weston, Barnhill, & Vapnik,
2002).

4688 S. Baccianella et al. / Expert Systems with Applications 40 (2013) 4687–4696



Author's personal copy

d2, and only once in each of d3, d4 and d5; and assume that each of
d1 and d2 contains six other occurrences of words different from tk
and each of d3, d4 and d5 contains nine of them.

We intuitively feel that tk is a discriminator of some interest for
cj. Notwithstanding this, if we adopt the model based on ‘‘regular’’

documents, we have PMIðtk; cjÞ ¼ log2
Pðtk ;cjÞ

PðtkÞPðcjÞ
¼ log2

2
5

1(2
5
¼ 0, i.e., tk

is considered utterly uninteresting as a discriminator for cj. If we
instead adopt the model based on l-documents, we have

PMIðtk; cjÞ ¼ log2
Pðtk ;cjÞ

PðtkÞPðcjÞ
¼ log2

8
50

11
50(

20
50
¼ 0:036, i.e., tk is considered a

discriminator of some interest for cj. Other feature selection
functions such as information gain, chi-square, and others, would
behave similarly to PMI. h

The example above allows us to appreciate two reasons why the
l-documents approach is promising. The first reason is that, as we
have extensively argued, multiple occurrences of the same term
are now taken into account. This seems intuitively plausible: while
a single occurrence of a word in a given document may be due to
chance, it is much less likely that multiple occurrences of the same
word in the document are also due to chance. The second reason is
that the l-documents approach intuitively appears more robust
from a statistical point of view, since the counts that are fed into
the feature selection functions are much higher. For instance, data-
set TripAdvisor-15763 (see Table 1) contains only 10,508 ‘‘regular’’
training documents but 2,222,578 training l-documents, a number
211 times bigger. This means that its 36,670 unique words will
generate, on average, counts which are much higher, and the
resulting scores will be much less affected by sparsity.

The move from training documents to training l-documents is,
as far as feature selection is concerned, akin to the move, in naïve
Bayesian learners, from a multivariate Bernoulli event model
(where documents are events) to a multinomial event model
(where word occurrences are events). In the context of text classi-
fication this move was originally discussed in McCallum and Kamal
(1998). However, in that case the authors reported that little differ-
ence in performance was found when selecting features via the for-
mer model rather than via the latter model (no actual effectiveness
figures were given, though). Our work may be seen as exporting
that idea outside the realm of naïve Bayesian learners, and outside
the realm of single-label text classification, neither of which has
been done before to the best of our knowledge.

It is very important to note that after the reduced set of features
S has been identified via our feature selection mechanisms, classi-
fier training proceeds as usual, i.e., by using ‘‘regular’’ training doc-
uments; that is, the training documents are broken up into l-
documents only logically, and only for the purpose of carrying
out feature selection.

Note that switching from regular training documents to training
micro-documents for feature selection purposes does not entail
substantially higher costs from a computational point of view. In
fact, from a practical point of view there is certainly no need (nor
it makes any sense) to explicitly generate the l-documents; as
we have previously observed, the training documents are broken
down into l-documents only logically. The only thing that one
needs to do in practice is feed the feature selection functions the

term counts (i.e., the values of P(tk), P(cj) and P(tk,cj)) that would
be obtained if the training documents were broken down into l-
documents.

2.2. Feature selection methods for ordinal text classification

As indicated in the introduction, we here use ordinal text clas-
sification as a testbed of our idea. Ordinal classification (also known
as ordinal regression for text) consists in estimating (from a training
set Tr) a target functionU: D? Rwhich maps each document di 2 X
into exactly one of an ordered sequence (that we here call rankset,
or rating scale) R = hr1 & ' ' ' & rni of ranks (aka ‘‘scores’’, or ‘‘labels’’,
or ‘‘classes’’). The result of the estimation is a function bU called the
classifier,3 which we will evaluate on a test set Te. This problem is
somehow intermediate between single-label classification, in which
R is instead an unordered set, and metric regression, in which R is in-
stead a continuous, totally ordered set (typically: the set R of the
reals).

Our feature selection methods will typically consist of (a) attrib-
uting a score to each feature tk 2W by means of a function Score
that measures the predicted utility of tk for the classification pro-
cess (the higher the value of Score, the higher the predicted utility),
and, (b) given a predetermined reduction level n, selecting the
jSj = n ' jWj features based on their Score. The Score function will
sometimes be rank-specific (i.e., its form will actually be Score(tk, -
rj)), while sometimes it will be global to the entire rankset (i.e., its
form will actually be Score(tk)); in the former case, a method for
selecting a set of features global to the entire rankset from the
rank-specific scores will also be needed.

We now briefly sketch the feature selection methods that we
use here as testbeds for our idea. These are the Var⁄IDF, RR(Var⁄
IDF), RR(IGOR) and RR(AC⁄IDF) methods originally defined in Bac-
cianella, Esuli, and Sebastiani (2010b) (an extended version of
Baccianella, Esuli, & Sebastiani (2010a)). These functions repre-
sent the state of the art in feature selection for ordinal classifica-
tion, since the experiments reported in Baccianella et al. (2010b)
have shown that they substantively outperform the only two
other such functions (Var – Shimada & Endo, 2008 and PRP –
Mukras, Wiratunga, Lothian, Chakraborti, & Harper, 2007) ever
discussed (to the best of our knowledge) in the ordinal regression
literature.

For reasons of brevity we only describe Var⁄IDF, RR(Var⁄IDF),
RR(IGOR) and RR(AC⁄IDF) concisely; for more mathematical detail
and for the intuitions that underlie them see Baccianella et al.
(2010b). However, it is important to note that a detailed com-
prehension of them is not essential for the comprehension of
this paper: for the purposes of our work they can essentially
be seen as black boxes that, like the PMI function described in
Section 1,

1. take as input a training set of documents labelled according to
the rankset of choice;

2. return a Score for each term tk of which there is an instance in
Tr, obtained by analyzing the presence/absence of tk in the posi-
tive and negative examples of cj.

2.2.1. Var⁄IDF
In the first method (Var⁄IDF), Score(tk) is computed as

ScoreðtkÞ ¼ )ðVarðtkÞ þ !Þ + ðIDFðtkÞÞa ð1Þ

where

3 Consistently with most mathematical literature we use the caret symbol (^) to
indicate estimation.

Table 1
Main characteristics of the two datasets used in this paper; the four columns indicate
the number of training documents, the number of test documents, the number of
unique words, and the number of training l-documents (i.e., the number of tokens),
respectively.

Dataset jTrj jTej jWj jHj

TripAdvisor-15763 10,508 5255 36,670 2,222,578
Amazon-83713 20,000 63,713 138,964 3,399,721
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, Var(tk) is the variance of the distribution across the ranks in R of
the training documents containing tk; only the fact that a train-
ing document contains or does not contain tk is used;

, ! is a small positive constant whose purpose is to prevent the
first factor in the multiplication from being equal to zero, which
would reward those features that occur in a single document of
Tr;

, IDFðtkÞ ¼ loge
jTrj

#Tr ðtkÞ
(where #Tr(tk) denotes the number of train-

ing documents that contain feature tk) represents inverse docu-
ment frequency;

, a is a nonnegative real-valued parameter (to be optimized on a
validation set) that allows to fine-tune the relative contribu-
tions of (Var(tk) + !) and IDF(tk) to the product.

The jSj features with the highest Score(tk) value are retained
while the others are discarded.

2.2.2. RR(Var⁄IDF)
The second method (RR(Var⁄IDF)) also uses Eq. (1) for

computing Score(tk), but does not simplistically choose the jSj
top-scoring features. Instead, it provisionally assigns each feature
tk to the rank closest to the mean of the distribution across the
ranks of the training documents containing it. Then, it performs
a so-called ‘‘round robin’’ (RR) step, i.e., a step in which (i) for
each rank rj 2 R it sorts the features tk assigned to rj in descend-
ing order of Score(tk), and then (ii) it allows the n ranks r1, . . . ,rn
to take turns in picking features, one at a time, from the top
of their rank-specific orderings, until jSj features have been
picked.

2.2.3. RR(IGOR)
The third method (RR(IGOR) – where IGOR stands for ‘‘informa-

tion gain for ordinal regression’’), computes scores via a rank-spe-
cific function Score(tk,rj). For each feature tk and for each j = 1, . . . ,
(n ) 1) we define cj = r1[' ' '[rj and !cj ¼ rjþ1 [ . . . [ rn and compute

Scoreðtk; rjÞ ¼ IGðtk; cjÞ ¼
X

x2fcj ;!cjg

X

y2ftk ;!tkg

Pðx; yÞlog2
Pðx; yÞ
PðxÞPðyÞ

ð2Þ

Here probabilities are interpreted in an event space of documents;
this means that, e.g., P(cj) stands for the probability that a random
document belongs to class cj, and Pð!tkÞ stands for the probability
that a random document does not contain tk. That is, we use the
classic information gain function as if we had to perform feature
selection for a binary classification task in which the two classes
to separate are the union of the first j ranks and the union of the last
(n ) j) ranks in the rankset.

We then (i) sort, for each of the ranks in {r1, . . . , rn)1}, the jWj
features in decreasing order of their Score(tk,rj) value, and (ii) carry
out a round robin step as for method RR(Var⁄IDF), until jSj features
have been picked.

2.2.4. RR(AC⁄IDF)
The fourth and last method (RR(AC⁄IDF) – where AC stands for

‘‘anticorrelation’’), also computes for each feature tk, via a rank-
specific function Score(tk,rj), scores for each of the ranks rj 2 R via
the function

Scoreðtk; rjÞ ¼ )
P

fdi2Trjtk2digEð
eUj; diÞ

jfdi 2 Trjtk 2 digj
þ !

 !
+ ðIDFðtkÞÞa ð3Þ

where eUj is the ‘‘trivial’’ classifier that assigns all documents to the
same rank rj, EðeUj;diÞ is an error measure (here taken to be
jeUðdiÞ )UðdiÞj, i.e., the absolute distance between the rank pre-
dicted by eUj and the true rank), and IDF, ! and a are as in Eq. (1).
We then (i) sort, for each of the n ranks rj 2 R, the jWj features in

decreasing order of their Score(tk,cj) value, and (ii) carry out a round
robin step as in the two previous methods, until jSj features have
been picked.

2.3. Discussion

As repeatedly noted before, most popular feature selection
functions from the text classification literature only use informa-
tion indicating the presence/absence of feature tk in training docu-
ment di, and do not use information on the number of times tk
occurs in di. This is also true of the four methods we have presented
in Section 2.2. In fact:

, In the Var⁄IDF and RR(Var⁄IDF) methods, Var(tk) is the variance
of the distribution of the training documents containing tk; that
is, only the fact that a training document contains or does not
contain tk is used.

, Concerning RR(IGOR), in Eq. (2) the quantity P(t) is the probabil-
ity that a random training document contains t at all; the num-
ber of times t occurs in the document has no impact.

, In the RR(AC⁄IDF) method, the first factor of Eq. (3) depends,
both at the numerator and at the denominator, on the training
documents that contain tk at all; the number of times tk is con-
tained in them has no impact.

3. Experiments

3.1. Experimental setting

3.1.1. The datasets
We have tested the proposed method on two different data-

sets,4 whose characteristics are concisely reported in Tables 1 and 2.
The first is the TripAdvisor-15763 dataset first used in

Baccianella, Esuli, and Sebastiani (2009b) and consisting of
15,763 hotel reviews from the TripAdvisor Web site. We use
the same split between training and test documents as used in
Baccianella et al. (2009b), resulting in 10,508 documents used
for training and 5255 for test; the training set contains 36,670
unique words.

The second dataset is the Amazon-83713 dataset first used in
Baccianella et al. (2010b) and consisting of 83,713 home electron-
ics product reviews from the Amazon Web site. Amazon-83713 is
actually a small subset of the Amazon dataset,5 consisting of more
than 5 million reviews, originally built by Jindal and Liu for spam re-
view detection purposes (Jindal et al., 2007), and contains all the re-
views in the sections MP3, USB, GPS, Wireless 802.11, Digital
Camera, and Mobile Phone. We use the same split between training
and test documents as in Baccianella et al. (2010b), resulting in
20,000 documents used for training and 63,713 for test; the training
set contains 138,964 unique words. To the best of our knowledge,
Amazon-83713 is still the largest dataset ever used in the literature
on ordinal text classification.

Table 2
Main characteristics of the two datasets used in this paper; the five columns indicate,
for each rank, the fraction of documents that belong to the rank.

Dataset 1 Star

(%)
2 Stars

(%)
3 Stars

(%)
4 Stars

(%)
5 Stars

(%)

TripAdvisor-
15763

3.9 7.2 9.4 34.5 45.0

Amazon-83713 16.2 7.9 9.1 23.2 43.6

4 Both datasets are available for download from http://hlt.isti.cnr.it/reviewdata/.
5 http://www.cs.uic.edu/liub/FBS/sentiment-analysis.html.
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Both datasets consist of reviews scored on a rating scale from 1
Star to 5 Stars; both datasets are highly imbalanced (see Table 2),
with positive and very positive reviews by far outnumbering neg-
ative and very negative reviews.

3.1.2. Evaluation measures
As our main evaluation measure we use the macroaveraged

mean absolute error (MAEM) measure proposed in Baccianella, Esuli,
and Sebastiani (2009a), and defined as

MAEMðbU; TeÞ ¼ 1
n

Xn

j¼1

1
jTejj

X

di2Tej

jbUðdiÞ )UðdiÞj ð4Þ

where Tej denotes the set of test documents whose true rank is rj
and the ‘‘M’’ superscript indicates ‘‘macroaveraging’’. As argued in
Baccianella et al. (2009a), the advantage of MAEM over ‘‘standard’’
mean absolute error (defined as

MAElðbU; TeÞ ¼ 1
jTej

X

di2Te

jbUðdiÞ )UðdiÞj ð5Þ

Fig. 1. Results obtained with the two variants (based on ‘‘regular’’ documents and on l-documents, respectively) of the Var⁄IDF feature selection function on the TripAdvisor-
15763 dataset with the !-SVR and SVORIM learners. Results are evaluated with MAEM; lower values are better. ‘‘FFS’’ refers to the use of the full feature set (i.e., n = 1).

Fig. 2. Same as Fig. 1 but with Amazon-83713 in place of TripAdvisor-15763.
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where the ‘‘l’’ superscript stands for ‘‘microaveraging’’) is that it is
robust to rank imbalance (which is useful, given the above-men-
tioned imbalanced nature of our datasets) while coinciding with
MAEl on perfectly balanced datasets (i.e., datasets with exactly
the same number of test documents for each rank).

3.1.3. Learning algorithms
We have tested our methods with two different SVM-based

learning algorithms for ordinal regression: !-SVR (Drucker, Burges,
Kaufman, Smola, & Vapnik, 1997), originally devised for linear
regression and which we have adapted to solve ordinal regression

problems, and SVOR (Chu & Keerthi, 2007), which was specifically
devised for solving ordinal regression.

!-support vector regression (!-SVR) is the original formulation of
support vector (metric) regression as proposed in Drucker et al.
(1997); we have used the implementation from the freely available
LibSvm library.6 !-SVR can be adapted to the case of ordinal regres-
sion by (a) mapping the rankset onto a set of consecutive natural
numbers (in our case we have simply mapped the sequence [1
Star, . . . ,5 Stars] onto the sequence [1, . . . ,5]), and (b) rounding the

Fig. 3. Same as Fig. 1 but with RR(Var⁄IDF) in place of Var⁄IDF.

Fig. 4. Same as Fig. 3 but with Amazon-83713 in place of TripAdvisor-15763.

6 http://www.csie.ntu.edu.tw/cjlin/libsvm/.
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real-valued output of the classifier to the nearest natural number in
the sequence.

SVOR (Chu & Keerthi, 2007) consists instead of a newer algo-
rithm that tackles the ordinal regression problem without using
any a priori information on the ranks, and by finding n ) 1 thresh-
olds that divide the real-valued line into n consecutive intervals
corresponding to the n ordered ranks. The authors propose two dif-
ferent variants: the first (nicknamed SVOREX, for ‘‘Support Vector
Ordinal Regression with EXplicit constraints’’) takes into account
only the training examples of adjacent ranks in order to determine
the thresholds, while the second (SVORIM, for ‘‘Support Vector

Ordinal Regression with IMplicit constraints’’) determines each
threshold by using all the training examples from all of the ranks.
Given that the authors have experimentally shown SVORIM to out-
perform SVOREX, the former (in the implementation7 available
from the authors of Chu & Keerthi (2007)) is the variant we have
adopted for our experiments.

Both learning algorithms use the sequential minimal optimiza-
tion algorithm for SVMs (Platt, 1999), and both map the solution

Fig. 5. Same as Fig. 1 but with RR(IGOR) in place of Var⁄IDF.

Fig. 6. Same as Fig. 5 but with Amazon-83713 in place of TripAdvisor-15763.

7 http://www.gatsby.ucl.ac.uk/chuwei/svor.htm.

S. Baccianella et al. / Expert Systems with Applications 40 (2013) 4687–4696 4693



Author's personal copy

onto the real-valued line. The main difference between them is the
use of a priori information. In fact, when using !-SVR the user needs
to explicitly specify a mapping of the rankset onto a sequence of
natural numbers and to set the thresholds in-between these latter,
while SVOR automatically derives all the needed information from
the training set.

As the baselines against which to test our l-documents-based
approach we have used the results we have obtained in Baccianella
et al. (2010b) (on the same datasets and with the same learning
algorithms) with the versions based on ‘‘regular’’ training docu-
ments of the same feature selection functions.

3.1.4. Experimental protocol
The experimental protocol essentially conforms to that of Bac-

cianella et al. (2010b). As a vectorial representation, after stop
word removal (and no stemming) we have used standard bag-of-
words with cosine-normalized tfidf weighting. We have run all
our experiments for all the 100 reduction levels
n 2 {0.001,0.01,0.02,0.03, . . . ,0.99}. This results in a massive exper-
imentation effort, consisting of 2 datasets ( 2 learners ( 100
reduction factors ( 4 feature selection functions = 1600 train-
and-test experiments, which add up to the other 1600 whose re-
sults we use as baseline and that had been already presented in
Baccianella et al. (2010b).

Fig. 7. Same as Fig. 1 but with RR(AC⁄IDF) in place of Var⁄IDF.

Fig. 8. Same as Fig. 7 but with Amazon-83713 in place of TripAdvisor-15763.
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We have set

, the c and C parameters of both !-SVR and SVOR, and
, the a parameter for the Var⁄IDF, RR(Var⁄IDF) and RR(AC⁄IDF)
methods

to the optimal values that we had obtained in the experiments of
Baccianella et al. (2010b). This means that the parameters are opti-
mal for the baselines but not necessarily for the methods proposed
here, which lends even higher value to the results obtained by these
latter.

For the Var⁄IDF, RR(Var⁄IDF) and RR(AC⁄IDF) methods we have
set the smoothing parameter ! to 0.1, i.e., to the same value we
had used in the experiments of Baccianella et al. (2010b), so as
to allow perfect comparability between the current experiments
and the baseline experiments. For RR(AC⁄IDF), the E error measure
was taken to be jbUðdiÞ )UðdiÞj (i.e., absolute error), given that it is
the document-level analogue of our chosen measure (MAEM).

3.2. Results

The results of our experiments are displayed in Figs. 1–8. In
each such figure the effectiveness (measured via MAEM) of one of
our four feature selection functions is plotted as a function of the
tested reduction level; in each figure four curves are reported,
deriving from the choice of two learners and two different inter-
pretations (based on ‘‘regular’’ documents – indicated by solid lines
– or on l-documents – indicated by dotted lines) of the same func-
tion. The horizontal lines indicate the effectiveness obtained by
using the full feature set (n = 1, indicated as ‘‘FFS’’).

Themain observation to bemade from these plots is that the use
of training l-documents substantially enhances the accuracy of
ordinal text classification, since it is practically always the case that
theMAEM values of the l-document-based versions are better than
the corresponding values of the classic, ‘‘regular document’’-based
versions, irrespective of feature selection function, dataset, and
learner.

A second insight that can be obtained by analyzing these plots is
that the use of feature selection functions based on l-documents
allows to obtain substantially smaller levels of error with reduced
feature sets (i.e., with values of n < 1) than with the full feature set,
which rarely happens (as evident from the plots) with the standard
versions of the same functions. That this is a strikingly successful
aspect of our method can be seen by considering the fact that these
results have been obtained with learning algorithms in the support
vector machine family, which have consistently been shown to be
robust to very large dimensionalities of the feature space (Joach-
ims, 1998; Taira & Haruno, 1999). In other words, SVMs are prob-
ably the toughest benchmark for a feature selection algorithm, and
the improvements shown by our methods with respect to using the
full feature set speak very much in favour of them.

Table 3 reports MAEM values as averaged, for a given combina-
tion of dataset and learner, across the 100 values of n; these values
show an average error reduction ranging from 2.48% (SVOR on Tri-
pAdvisor-15763) to 6.29% (!-SVR on Amazon-83713), with even
higher error reductions obtained for specific feature selection func-
tions. A further interesting observation that this table allows to
draw is that the improvements brought about by the l-documents
technique are much higher for !-SVR than for SVOR; the fact that !-
SVR is practically always a better performer than SVOR lends thus
to the l-documents technique even higher value.

4. Conclusions and further research

We have presented a method for performing feature selection in
text classification contexts that allows classic feature selection

methods based on binary information to be sensitive to term fre-
quency information, i.e., to multiple occurrences of the same term
in a given training document. We have obtained this by encoding
term frequency information as binary information; more specifi-
cally, we have obtained this by (logically) breaking down each
training document di into length(di) ‘‘micro-documents’’ (i.e., docu-
ments consisting of a single word occurrence) labelled with the
same class label(s) as the original document. As a testbed for this
method we have used ordinal text classification. We have pre-
sented a large-scale experimentation in which we have tested this
method with two datasets of product reviews, four previously pre-
sented feature selection functions, and two learning algorithms for
ordinal regression. The results have shown substantial accuracy
improvements for all combinations of dataset, feature selection
function, and learning algorithm.

One of the problems with the l-documents-based method we
have proposed is that, by transforming each word occurrence into
a l-document and then considering it as a training example for the
purposes of feature selection, it de facto enforces a notion of term
frequency in which this latter grows linearlywith the number #(tk,-
di) of occurrences of feature tk in document di, i.e., tf(tk,di) = #(tk,di).
It is instead well-known that the best-performing variants of the tf
function are the ones in which tf(tk,di) grows sublinearlywith #(tk, -
di) (Salton & Buckley, 1988; Zobel & Moffat, 1998); a simple exam-
ple is the well-known form

tf ðtk;diÞ ¼
1þ log#ðtk;diÞ if #ðtk;diÞ > 0
0 otherwise

!
ð6Þ

In order to address this shortcoming we plan to experiment a vari-
ant of this approach in which, after breaking a training document
down into l-documents, only a fraction of these l-documents are
retained for feature selection. Given a nonzero number #(tk,di) of
occurrences of feature tk in training document di, this approach
would consist of retaining, instead of #(tk,di) l-documents consist-
ing of feature tk and derived from breaking up di, only 1 + blog #(tk, -
di)c (or 1 + dlog#(tk,di)e) of them. This would de facto enforce the
notion of term frequency formalized by Eq. (6).
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