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Abstract. Active learning refers to the task of devising a ranking func-
tion that, given a classifier trained from relatively few training examples,
ranks a set of additional unlabeled examples in terms of how much fur-
ther information they would carry, once manually labeled, for retrain-
ing a (hopefully) better classifier. Research on active learning in text
classification has so far concentrated on single-label classification; active
learning for multi-label classification, instead, has either been tackled in
a simulated (and, we contend, non-realistic) way, or neglected tout court.
In this paper we aim to fill this gap by examining a number of realistic
strategies for tackling active learning for multi-label classification. Each
such strategy consists of a rule for combining the outputs returned by the
individual binary classifiers as a result of classifying a given unlabeled
document. We present the results of extensive experiments in which we
test these strategies on two standard text classification datasets.

1 Introduction

In many applicative contexts involving supervised learning, labeled data may
be scarce or expensive to obtain, while unlabeled data, even sampled from the
same distribution, may abound. In such situations it may be useful to employ
an algorithm that ranks the unlabeled examples and asks a human annotator to
label a few of them, starting from the top-ranked ones, so as to provide additional
training data. The task of this algorithm is thus to rank the unlabeled examples
in terms of how useful they would be, once labeled, for the supervised learning
task. The discipline that studies these algorithms is called active learning [1].

This paper focuses on the application of active learning to text classification
(aka text categorization – TC), and to multi-label text classification (MLTC) in
particular. Given a set of textual documents D and a predefined set of classes
(aka labels, or categories) C = {c1, . . . , cm}, MLTC is defined as the task of
estimating an unknown target function Φ : D × C → {−1, +1}, that describes
how documents ought to be classified, by means of a function Φ̂ : D × C →
{−1, +1} called the classifier1; here, +1 and −1 represent membership and non-
membership of the document in the class. Each document may thus belong to
1 Consistently with most mathematical literature we use the caret symbol (ˆ) to in-

dicate estimation.
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zero, one, or several classes at the same time. MLTC is usually accomplished
by generating m independent binary classifiers Φ̂j , one for each cj ∈ C, each
entrusted with deciding whether a document belongs or not to class cj .

In this paper we will restrict our attention to classifiers that, aside from tak-
ing a binary decision on a given document, also return as output a confidence
estimate, i.e., a numerical value representing the strength of their belief that the
returned decision is correct. We formalize this by taking a classifier to be a func-
tion Φ̂ : D×C → [−1, +1] in which the sign of the returned value sgn(Φ̂(di, cj))
indicates the decision of the classifier, and the absolute value |Φ̂(di, cj)| represents
its confidence in the decision (the higher the value, the higher the confidence).

MLTC is different from single-label TC (SLTC) since this latter tackles the
case in which one and only one class must be attributed to each document. This
is formalized by viewing a classifier as a function Φ̂ : D → C× [0, 1] which, given
a document, returns the class to which the classifier believes the document to
belong, plus an estimate of the classifier’s confidence in this belief.

An analysis of previous work on active learning in TC (see Section 4) shows
that this literature has so far exclusively concentrated on SLTC. In this context,
a typical strategy for active learning consists, once a classifier has been gener-
ated with the available training examples, of ranking the unlabeled examples
in increasing order of the confidence that this classifier had in classifying them,
since an example which the system classified with low confidence has a high
probability of being, once labeled by a human annotator, very informative for
retraining the classifier (see e.g. [2]).

However, it is of key importance to note that this strategy is only made possi-
ble by the fact that in SLTC a single confidence value is returned for each unla-
beled example. Conversely, in MLTC this strategy cannot be applied straightfor-
wardly, since for each test document di MLTC generates m different confidence
values |Φ̂(di, cj)|, one for each cj ∈ C. This means that either

1. m independent document rankings are generated, each based on the confi-
dence scores returned by a given binary classifier Φ̂j , after which the human
annotator scans each class-specific ranking, one by one, annotating for each
such ranking the top-ranked documents. We call this option local labeling,
since the labeling activity is performed locally to each class. Or:

2. a unique ranking is generated, based on the combination of the m confidence
scores associated to the same document. We call this option global labeling,
since the labeling activity is performed globally to the entire set of classes.

Local labeling has been frequently adopted, in a simulated way, in laboratory
research on active learning. However, we argue that this is not feasible in prac-
tice. In fact, let us assume that the average human effort involved in reading
(or browsing through, or understanding for the sole purpose of classifying) a
document is r, and that the average human effort involved in deciding whether
a given class should be attributed or not to this document is c � r (we here
assume that an annotator already has an understanding of the meaning of the
classes); then the total effort involved in classifying a document is r+m∗ c. The
key observation here is that, in all likelihood, (r+m∗c) < 2(r+c)� m(r+c) for
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any reasonable value of m; that is, deciding which among the m classes should
be attributed to a document we have read requires less effort than reading it
again, and much less effort than reading it m times!

Local labeling is infeasible exactly because it would require a human annotator
to scan m different rankings, and hence to examine the same unlabeled document
up to m times in order to label it. Note that m may be large or very large: it
may be in the hundreds (as, e.g., in the Reuters-21578 [3] and RCV1-v2 [4]),
but it may also be in the hundreds of thousands (as in the Yahoo! collection
[5]). In operational environments one is thus left with only global labeling as an
option; it is different combination strategies for global labeling that this paper
proposes and studies experimentally.

We remark that this paper does not deal with active learning algorithms
for specific supervised learning devices (such as e.g., [6]), but presents active
learning strategies that are independent of the learning device, and that are
suitable for use with any such device. Incidentally, we note that this is the first
work that performs a truly large-scale experimentation of active learning in TC,
since previous works [2,6,7,8,9,10] have only addressed small datasets, with few
test documents, or few classes, or both. To the contrary, we here investigate
active learning in the context of two standard MLTC collections, both including
approximately 100 classes, one of them including almost 800,000 test documents.

The rest of the paper is organized as follows. Our strategies for performing
active learning in MLTC are described in Section 2. Section 3 discusses our
experiments and the experimental protocol we have followed. We review related
work in Section 4 and conclude in Section 5 by discussing future work.

2 Active Learning Strategies for MLTC

In this work we compare several strategies for ranking the automatically labeled
documents and presenting them to a human annotator for global labeling. We
explore three orthogonal dimensions according to which a given strategy σ may
be designed; we call them the “evidence” dimension, the “class” dimension, and
the “weight” dimension. Each individual strategy will thus result from making
a choice among several possible alternatives for each of the three dimensions.

From now on, as a notational convention, a given ranking strategy σ is iden-
tified by a sequence of three capital boldface letters, each letter indicating a
choice made according to a given dimension. For instance, the sequence SAN
will denote a strategy obtained by choosing MaxScore (S) for the “evidence”
dimension, Avg (A) for the “class” dimension, and NoWeighting (N) for the
“weight” dimension (see Sections 2.1 to 2.3 for the precise meaning of these
choices); 2 choices are available for the “evidence” dimension, 3 for the “class”
dimension, and 2 for the “weight” dimension, giving rise to 2 ∗ 3 ∗ 2 = 12 dif-
ferent strategies. We will also use the “∗” symbol as a wildcard, so that, e.g.,
the sequence SA* will denote the set of the two strategies obtained by choosing
MaxScore (S) for the “evidence” dimension, Avg (A) for the “class” dimen-
sion, and either of the two available choices for the “weight” dimension.
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We will also use the following terminology. Given a classifier Φ̂ : D × C →
[−1, +1], the value Φ̂(di, cj) will be called the cj-score of di; the value |Φ̂(di, cj)|
will be called the cj-confidence of di; and the value sgn(Φ̂(di, cj)) will be called
the cj-sign of di. We will further assume that we have a policy for combining
these class-dependent values into a single class-independent value (how this pol-
icy may vary is exactly the topic of Section 2.2); accordingly, the value Φ̂(di)
will be called the score of di; the value |Φ̂(di)| will be called the confidence of
di; and the value sgn(Φ̂(di)) will be called the sign of di.

We now move to discussing the three above-mentioned dimensions in detail.

2.1 The “Evidence” Dimension

The “evidence” dimension has to do with the type of evidence we decide to use
as a basis for ranking the unlabeled documents.

One potential choice is to use as evidence the confidence value |Φ̂(di)| with
which the unlabeled document di has been classified. As mentioned in Section 1,
the underlying intuition is that the lower the confidence value, the more the doc-
ument should prove informative for retraining the classifier, which means that
the documents which minimize this confidence value should be the top-ranked
ones. As a consequence, we call this choice MinConfidence (in symbols: C);
essentially, this corresponds to the notion of uncertainty sampling discussed in
[2] (see Section 4). Of course, the catch here is that, in reality, not a single confi-
dence value |Φ̂(di)|, but m different cj-confidence values |Φ̂(di, cj)|, are generated
for each unlabeled document di. Exactly how these cj-confidence values should
generate “the” confidence value of di according to which the ranking should be
produced is the topic of the “class” dimension, to be discussed in Section 2.2.

A second, alternative choice is instead to use as evidence the score Φ̂(di)
returned for di by the classifier. Here a different intuition is at play, namely,
that the higher the score, the more likely it is that di is a positive example
(since scores close to 1 indicate high confidence that the document is a positive
example, and scores close to -1 indicate high confidence that the document is a
negative one), and that it is exactly positive examples, rather than negative ones,
that are typically most useful in a supervised learning task. As a consequence,
we call this choice MaxScore (S); essentially, this corresponds to the notion
of relevance sampling discussed in [2] (see Section 4). Again, we are faced with
the fact that m different cj-scores are generated for each unlabeled document di;
again, exactly how these cj-scores should generate “the” score of di according
to which the ranking should be produced, will be discussed in Section 2.2.

2.2 The “Class” Dimension

The “class” dimension has to do with the fact that, whatever type of evidence we
elect to use (as from the “evidence” dimension), for each automatically labeled
document di there are m different values for this evidence, one for each class
cj ∈ C; each alternative choice for this dimension represents a policy on how to
generate one class-independent piece of evidence from the m class-specific ones.
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One potential choice is picking the value that maximizes our expected infor-
mativeness across all cj ∈ C. If our choice according to the “evidence” dimension
is MinConfidence, this will mean picking mincj∈C |Φ̂(di, cj)|, i.e., the minimum
across the cj-confidence values; if we have instead gone the MaxScore route,
then this will mean picking maxcj∈C Φ̂(di, cj), i.e., the maximum among the cj-
scores. The rationale of this policy is that we want the manual annotator to
concentrate on the documents that are deemed to be extremely valuable at least
for one class. We call this choice Min/Max (M).

A second, alternative choice is averaging all values across all cj ∈ C. This
policy is intended to force the human annotator to label the documents deemed
to be at least fairly valuable for many classes. We call this choice Avg (A).

A further, alternative choice consists in employing a round robin policy, ac-
cording to which the top-ranked examples for each class are picked, so that each
class will be adequately championed in the resulting rank. This is obtained by
(a) picking, for each class cj ∈ C, the best automatically labeled document ac-
cording to the criterion chosen for the “evidence” dimension, (b) ranking these
m documents according to this criterion, (c) using the resulting ranking to fill
the positions from the 1st to at most the m-th of the global rank. After this,
these three steps are repeated a second time by ranking the second best docu-
ments for each class and using the resulting ranking to fill the positions from
at most the m + 1-th to at most the 2m-th of the global rank; ... after which
the three steps are repeated a k-th time by ranking the k-th best documents for
each class and using the resulting ranking to fill the positions from at most the
((k − 1)m + 1)-th to at most the km-th of the global rank2. We call this choice
RoundRobin (R).

2.3 The “Weight” Dimension

The “weight” dimension has to do with the fact that, in ranking the unlabeled
documents, it might or it might not be desirable to treat all classes equally.

One choice is to give more weight to those classes on which the current clas-
sifier is still performing badly, so as to prefer those documents that are likely to
bring about an improvement where it is most needed. Assume we are using an
evaluation function f(Φ̂j) that ranges on [0, 1] (with higher values indicating bet-
ter effectiveness). This policy thus corresponds (i) to multiplying the |Φ̂(di, cj)|
confidence value by f(Φ̂j) (which indicates the effectiveness that the current
classifier has obtained on class cj) in case MinConfidence is the choice for the
“evidence” dimension, or (ii) to multiplying the Φ̂(di, cj) score by (1 − f(Φ̂j))
in case MaxScore has been chosen instead. Note that when f(Φ̂j) = 0 (resp.,
f(Φ̂j) = 1), for the MinConfidence strategy (resp., for the MaxScore strat-
egy) the multiplier defined by the weight dimension would be equal to 0; if
Min/Max were the choice for the “class” dimension, this would result in all
2 Duplicates are obviously removed. That is, when the same document is selected for

different classes, in the same round on in different rounds, it is used only once in the
global ranking; in this case, strictly less than km documents will be ranked.
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documents having the same rank, which is undesirable. We have solved this is-
sue by always using, for the purposes of the weight dimension, Laplace-smoothed
estimates of F1, with the smoothing parameter set to ε = 0.05.

Since our evaluation measure of choice will be F1, we call this choice F1-
Weighting (W). An alternative choice is instead to treat all classes alike. We
call this choice NoWeighting (N).

3 Experiments

As the learning device for generating our classifiers we have used a boosting-
based learner, called MP-Boost [11]; boosting is currently among the classes
of supervised learning devices that obtain the best performance in a variety of
learning tasks and, at the same time, have strong justifications from computa-
tional learning theory. MP-Boost is a variant of AdaBoost.MH [12] optimized
for multi-label settings, which has been shown [11] to obtain considerable effec-
tiveness improvements with respect to AdaBoost.MH. In all the experiments
the algorithm has been run with a number of iterations fixed to 1,000.

As datasets, in our experiments we have used the Reuters-21578 and
RCV1-v2 corpora.Reuters-21578 is probably still the most widely used bench-
mark in MLTC research3. It consists of a set of 12,902 news stories, partitioned
(according to the “ModApté” split we have adopted) into a training set of 9,603
documents and a test set of 3,299 documents. The documents are labelled by 118
categories; in our experiments we have restricted our attention to the 115 cate-
gories with at least one positive training example. Reuters Corpus Volume
1 version 2 (RCV1-v2)4 is a more recent MLTC benchmark made available by
Reuters and consisting of 804,414 news stories produced by Reuters from 20 Aug
1996 to 19 Aug 1997. In our experiments we have used the “LYRL2004” split, de-
fined in [4], in which the (chronologically)first 23,149documents are used for train-
ing and the other 781,265 are used for test. Of the 103 “Topic” categories, in our
experiments we have restricted our attention to the 101 categories with at least one
positive training example. Consistently with the evaluation presented in [4], also
categories placed at internal nodes in the hierarchy are considered in the evalua-
tion; again, consistently with [4], as positive training examples of these categories
we use the union of the positive examples of their subordinate nodes, plus their
“own” positive examples.

In all the experiments discussed in this paper stop words have been removed,
punctuation has been removed, all letters have been converted to lowercase,
numbers have been removed, and stemming has been performed by means of
Porter’s stemmer. Word stems are thus our indexing units; since MP-Boost
requires binary input, only their presence/absence in the document is recorded,
and no weighting is performed.

As a measure of effectiveness that combines the contributions of precision (π)
and recall (ρ) we have used the well-known F1 function, defined as F1 = 2πρ

π+ρ =

3 http://www.daviddlewis.com/resources/testcollections/~reuters21578/
4 http://trec.nist.gov/data/reuters/reuters.html
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2TP
2TP+FP+FN , where TP , FP , and FN stand for the numbers of true positives,
false positives, and false negatives, respectively. Note that F1 is undefined when
TP = FP = FN = 0; in this case we take F1 to equal 1, since the classifier
has correctly classified all documents as negative examples. We compute both
microaveraged F1 (denoted by Fμ

1 ) and macroaveraged F1 (FM
1 ). Fμ

1 is obtained
by (i) computing the category-specific values TPi, FPi and FNi, (ii) obtaining
TP as the sum of the TPi’s (same for FP and FN), and then (iii) applying the
F1 = 2TP

2TP+FP+FN formula. FM
1 is obtained by first computing the category-

specific F1 values and then averaging them across the cj ’s.

3.1 Experimental Protocol

In this work we adopt the following iterative experimental protocol; the protocol
has three integer parameters α, β, and γ. Let Ω be a dataset partitioned into a
training set Tr and a test set Te, and let σ be an active learning strategy:

1. Set an iteration counter t = 0;
2. Set the current training set Trt to the set of the chronologically5 first α

examples of Tr; set the current “unlabeled set” Ut ← Tr/T rt;
3. For t = 1, . . . , β repeat the following steps:

(a) Generate a classifier Φ̂t from the current training set Trt;
(b) (If σ is one of the strategies in **W) Evaluate (by means of F1) Φ̂t by

5-fold cross-validation on Trt;
(c) Evaluate the effectiveness of Φ̂t on Te;
(d) Classify Ut by means of Φ̂t;
(e) Rank Ut according to strategy σ (if σ is one of the strategies in **W,

the F1 values required by the strategy are those computed at Step 3b);
(f) Let r(Ut, γ) be the set of the γ top-ranked elements of Ut; set Trt+1 ←

Trt ∪ r(Ut, γ); set Ut+1 ← Ut/r(Ut, γ).

We remark that Step 3c has only the purpose of collecting the results for exper-
imental purposes (i.e., for producing the tables of Section 3.2); since it uses the
test set Te, its results are obviously in no way accessible to the algorithm.

The above protocol simulates the work of a human annotator who has avail-
able a training set Tr0 consisting of α training examples, and an “unlabeled
set” U0 consisting of |Tr| − α unlabeled examples. The annotator generates a
classifier Φ̂0 from Tr0, uses it to classify the documents in U0, asks the active
learning agent to rank them, manually labels the γ top-ranked ones, generates
a new classifier Φ̂1 from an augmented training set that comprises Tr0 and the
γ newly labeled examples, and repeats this process β times.

In all our experiments we have set, for both datasets, α = 100, β = 20, and
γ = 50; this means that each strategy will be evaluated by testing the accuracy
of the classifiers generated from training sets consisting of 100, 150, . . . , 950,
1000 training examples, for a total 19 experiments per strategy. We think these
5 Our two datasets consist of news stories that were broadcast by Reuters over a period

of time; “chronological order” here refers to the date of issue of these news stories.
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parameters are realistic, since they simulate a situation in which: (i) there are
only 100 training examples at the beginning; (this is reasonable, since in many
applications in which significantly more training examples are available, human
annotators might not find it worthwhile to annotate any further); (ii) every time
the human annotator manually labels 50 unlabeled examples, he/she wants to
retrain the system (this is reasonable, since (a) he/she wants to check whether
the added training examples have increased the accuracy of the system (this can
be done by having the system always perform Step 3b), and since (b) he/she
wants the operate on a ranking of the unlabeled documents that incorporates as
much as possible the feedback he/she has already given to the system); (iii) the
human annotator does not want to do any further manual labeling once 1,000
training examples are available (this seems reasonable, since at this point the
cost-effectiveness of the manual effort has probably decreased significantly).

As the baseline strategy for the evaluation of our results we adopt the one
that consists in adding further labeled documents to the training set by picking
them at random. This simulates the behaviour of a human annotator that picks
unlabeled documents and labels them in no particular order.

3.2 Results and Discussion

The main results of our experiments are summarized in Table 1. The top 4
rows report, for each individual strategy, the values of Fμ

1 and FM
1 obtained by

averaging across the results of the 19 different training sessions resulting from
running the protocol of Section 3.1 with α = 100, β = 20 e γ = 50. The bottom
4 rows focus instead on the last among these 19 values, i.e., reports the Fμ

1

and FM
1 values obtained by the various classifiers trained on the 1,000 training

examples available by the end of the active learning process. Table 2 is obtained
by averaging the values from Table 1 (top 4 rows) across all possible values
for two of the three dimensions of Sections 2.1 to 2.3, so as to allow a direct
comparison among the various possible choices for the same dimension. In order
to validate the relevance of the results produced by our strategies with respect
to the baseline, we have subjected to a statistical significance macro t-test [13]
the results produced by the final classifiers trained on 1,000 examples (i.e., those
reported in the bottom 4 rows of Table 1); all the results have turned out to be
statistically significantly different from the baseline at a p-value ≤ 0.01.

It is clear from these tables that the results are not easy to interpret. Table
1 (top 4 rows) shows that no single strategy clearly emerges as the winner. For
Reuters-21578, CMW emerges as the best in terms of Fμ

1 , but the best in
terms of FM

1 is a completely different strategy, namely, SAN; for RCV1-v2,
instead, yet a third strategy proves the best (namely, CMN), this time for both
Fμ

1 and FM
1 .

The situation becomes a bit clearer by looking at Table 2, which allows us to
appreciate the contribution of the various dimensions to the overall process.

The first indication we receive from Table 2 is that, in terms of the “evidence”
dimension, using the confidence of di (MinConfidence) is more useful than
using its score (S), since C** strategies outperform S** strategies for both
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Table 1. Values of F1 averaged across the 19 different training sessions (top 4 rows),
and values of F1 obtained in the last training session, i.e., with 1,000 training examples
selected as a result of the active learning strategy (bottom 4 rows). Boldface indicates
the best performance on the dataset.

Base CMW SMW CAW SAW CRW SRW CMN SMN CAN SAN CRN SRN

F µ
1

Reuters-21578 .682 .722 .631 .683 .657 .698 .687 .704 .671 .673 .692 .708 .689
RCV1-v2 .530 .511 .470 .491 .485 .506 .471 .566 .514 .513 .493 .541 .493

F M
1

Reuters-21578 .541 .542 .508 .552 .531 .522 .534 .543 .535 .558 .559 .564 .549
RCV1-v2 .236 .215 .166 .198 .186 .215 .186 .261 .224 .224 .188 .229 .176

F µ
1

Reuters-21578 .752 .790 .696 .771 .755 .777 .752 .765 .748 .747 .783 .769 .750
RCV1-v2 .622 .599 .503 .598 .565 .583 .522 .639 .570 .594 .575 .624 .560

F M
1

Reuters-21578 .575 .595 .547 .615 .600 .578 .576 .570 .597 .617 .642 .617 .607
RCV1-v2 .304 .272 .183 .284 .247 .270 .230 .312 .274 .276 .261 .299 .224

Table 2. Values of F1 averaged across the 19 different training sessions and across
two of the three dimensions. Boldface indicates the best performance on the dataset
across the same dimension.

evidence class weight
Base C** S** *M* *A* *R* **W **N

F µ
1

Reuters-21578 .682 .698 .671 .682 .676 .695 .680 .689
RCV1-v2 .530 .521 .488 .515 .495 .503 .489 .520

F M
1

Reuters-21578 .541 .547 .536 .532 .550 .542 .532 .551
RCV1-v2 .236 .224 .188 .216 .199 .202 .194 .217

datasets and both measures. This means that the principle according to which
we should encourage the labeling of documents on which the current classifier
is very uncertain, is more powerful than the principle according to which we
should maximize the influx of new positive examples. This is not surprising.
In fact, the intuition that underlies the former principle is that documents on
which the current classifiers are very uncertain lie near the surface that, in
feature space, separates positive from negative examples according to the current
classifiers, and that, as a consequence, knowing on which side of the surface these
documents actually lie allows the learning device to individuate a better-fitting
surface. Conversely, while adopting the latter principle indeed tends to maximize
the influx of new positive examples, these positive examples tend to be rather
uninformative, since the current classifiers were already fairly convinced of their
positivity; thus, having them labeled by the human annotator tends to reinforce
the classifiers in their already held beliefs, but does not improve much the insight
of the classifiers on different types of examples. From an experimental point of
view, a similar conclusion had been reached already in [2] (see Section 4); our
experiments thus confirm the results of [2] on a much larger experimental scale.

A second indication we receive from Table 2 is that, in terms of the “weight”
dimension, treating all classes alike (NoWeighting) is better than weighting
them according to how bad the current performance of the corresponding clas-
sifier is (F1-Weighting). This is somehow more surprising, but can probably
be explained by the fact that the Fμ

1 and FM
1 measures indeed treat all classes
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alike6; therefore, a policy, such as NoWeighting, that treats all classes alike
may be seen as directly optimizing the chosen effectiveness measures.

Indications are less clear concerning the “value” dimension; Min/Max is
the best performing policy on RCV1-v2, both for Fμ

1 and for FM
1 , while on

Reuters-21578 the winners are Avg for FM
1 and RoundRobin for Fμ

1 . While
none among these three policies emerges as the clear winner, we believe Min/
Max should be the policy of choice, since it is the best performer, and for
both measures, on the larger of the two test collections; proving the best on the
780,000+ test documents of RCV1-v2 should indeed be considered stronger ev-
idence than proving the best on the 3,000+ test documents of Reuters-21578.

4 Related Work

Several works have addressed active learning in the context of text classification
applications. Lewis and Gale [2] propose uncertainty sampling (US), which con-
sists in ranking unlabeled documents in increasing order of their cj-confidence.
The authors compare US with relevance sampling (RS), i.e., ranking unlabeled
documents in decreasing order of their cj-score, and find that US outperforms
RS. Liere and Tadepalli [8] test various query by committee strategies, whereby
a committee of classifiers classify the unlabeled examples, and those on which
the members of the committee disagree most are ranked highest. McCallum and
Nigam [9] further combine Liere and Tadepalli’s query-by-committee method
with Expectation Maximization (EM) in order to take full advantage of the
word co-occurrence information that can be mined from the unlabeled docu-
ments. Tong and Koller [6] propose an active learning method specific to SVMs,
in which ranking unlabeled documents is based on version space minimization
through various margin selection criteria. Xu et al. [10]’s representative sam-
pling method is based on clustering the unlabeled documents that lie inside the
margin determined by the SVM model learned in the previous iteration. After
m clusters are identified, the m “medoid” documents are added to the training
set. Hoi et al. [14] explore the problem of selecting an optimal batch of k un-
labeled documents at each iteration, so as to avoid the possibility that the set
of the k unlabeled documents top-ranked by an active learning process contain
redundant information, as when this set contains near-duplicates. For this they
propose to select the set of k documents that minimizes the global amount of
redundancy, as measured by the Fisher information of the classification model.
Davy and Luz [7] propose two “history-based” selection strategies. Their history
uncertainty sampling (HUS) strategy is an extension of Lewis and Gale’s [2] US
strategy in which the ranking value for a document is the sum of US values
obtained in the last k iterations of the active learning process. Their history
6 It might be argued that F µ

1 does not treat all classes alike, since more frequent
classes weight more. However, it is not class frequency that F1-Weighting pays
attention to, but effectiveness of the current classifier on the class. It is thus possible
that, had we devised an alternative choice to NoWeighting and F1-Weighting
that emphasized more frequent classes, this might have excelled in terms of F µ

1 .
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Kullback-Leibler divergence (HKLD) is instead a strategy that tends to select
the documents that have been labeled erratically by the most recently generated
classifiers. Finally, the work of Raghavan et al. [15,16] focuses on active learn-
ing as the task of simultaneously ranking features and documents for human
annotation, for the purpose of improving feature selection.

One common feature of all the works discussed above is that, when they test
their method on a multi-label collection with m classes, they run m independent
binary experiments, thus simulating a local labeling method (which, we have
argued, is artificial and unrealistic). A second common feature of all these works
is that the scale of the experiments they carry out is much smaller than in
the present paper, since they all test their methods on no more than 20,000
documents ([2] is the exception, with a test set of about 50,000 documents), and
on no more than 10 classes. On the contrary, we work on more than 100 classes
for each dataset, and use one dataset with more than 780,000 test documents;
the present paper thus qualifies as the first truly large-scale experimentation on
active learning in text classification.

We should also remark that, to our knowledge, active learning for multi-label
classification has never been addressed even outside the realm of text classifica-
tion; the reason of this is the fact that the machine learning literature is usually
concerned with single-label classification, and tends to consider multi-label clas-
sification as a trivial reiteration of binary (hence single-label) classification.

5 Conclusions

Previous works in active learning in multi-label text classification have made the
assumption that the unlabeled examples are ranked and presented to the human
annotator m times, one per class. We have argued that this is unrealistic, since
m is often in the hundreds at the very least, and this “local labeling” approach
would likely require the human annotator to examine the very same unlabeled
document more than once, in the context of different rankings. As a consequence,
we have examined a set of more realistic strategies for “global labeling”, i.e., for
generating a single ranking of the unlabeled documents that combines the m
different sources of evidence, one per class, available for the same document. We
have studied 12 such strategies in a large-scale experimental study, and argued
for the superiority of one such strategy, CMN.

In the near future we plan to extend this work by studying how this best-
performing strategy behaves as a function of the parameters α, β and γ of
Section 3.1, and as a function of the relationship of these parameters with the
number m of classes in the dataset.
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