
Multi-Store Metadata-Based
Supervised Mobile App Classification

Giacomo Berardi, Andrea Esuli,
Tiziano Fagni

Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche

56124 Pisa, Italy
E-mail: {firstname.lastname}@isti.cnr.it

Fabrizio Sebastiani∗
Qatar Computing Research Institute

Qatar Foundation
Doha, Qatar

E-mail: fsebastiani@qf.org.qa

ABSTRACT
The mass adoption of smartphone and tablet devices has
boosted the growth of the mobile applications market. Con-
fronted with a huge number of choices, users may encounter
difficulties in locating the applications that meet their needs.
Sorting applications into a user-defined classification scheme
would help the app discovery process. Systems for automat-
ically classifying apps into such a classification scheme are
thus sorely needed. Methods for automated app classifi-
cation have been proposed that rely on tracking how the
app is actually used on users’ mobile devices; however, this
approach can lead to privacy issues. We present a system
for classifying mobile apps into user-defined classification
schemes which instead leverages information publicly avail-
able from the online stores where the apps are marketed.
We present experimental results obtained on a dataset of
5,993 apps manually classified under a classification scheme
consisting of 50 classes. Our results indicate that automated
app classification can be performed with good accuracy, at
the same time preserving users’ privacy.

1. INTRODUCTION
Mobile devices such as smartphones or tablets are widely
used nowadays. In this sector the software distribution model
is radically different from the standard distribution model
of computer software. Mobile applications are mainly avail-
able, if not exclusively, on specific channels called “markets”
or “stores”. The user experience is then simplified: users
can browse these stores, locate specific apps, and download
them immediately, which means that the software is directly
transferred from the producer to the consumer. Each mo-
bile platform, such as Android or iOS, has its own store (e.g.,
the Play Store for Android apps and the Apple Store for iOS

∗Fabrizio Sebastiani is on leave from Consiglio Nazionale
delle Ricerche.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SAC 2015 April 13-17, 2015, Salamanca, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3196-8/15/04 $15.00.
http://dx.doi.org/10.1145/2695664.2695997.

apps), which is usually accessible from the Web or from a
dedicated app. However, many new stores are springing up
for each platform, especially for Android1. This fragmen-
tation of the software distribution channels may negatively
affect the user experience.

In order to help the user in locating the apps she needs,
stores are internally organized according to a pre-determined
classification scheme. That is, each app is labelled accord-
ing to one or more classes it belongs to, which helps the
user in exploring the store more effectively. However, it is
the developers themselves which classify their own apps; es-
pecially in stores with permissive publication policies, this
may mislead users. Additionally, each store relies on its own
classification scheme, depending, for example, on the func-
tionality of the store and the target for which it is intended;
for instance, the Amazon Appstore only hosts apps for the
Kindle eBook reader, which means its classification scheme
is targeted more to readers than to generic users. In a sce-
nario in which the user wants to explore and find an app
suitable for her own needs, it would instead be more useful
to have a unique, user-defined classification scheme accord-
ing to which all apps, independently of the store they are
marketed on, are classified.

In this paper we present a system for automatic app clas-
sification. Methods for automated app classification have
been proposed that rely on tracking how the app is actually
used on users’ mobile devices [5]; however, this approach
can lead to privacy issues. Our solution enables users to au-
tomatically classify apps under a user-defined classification
scheme, independently of the app’s distribution platform,
at the same time preserving users’ privacy. We tackle auto-
mated app classification by leveraging the metadata (textual
and numeric data) contained in the page that describes the
app (which is thus identified by its URL), as contained in a
specific app store. We approach the app classification task
through supervised learning: given a custom pre-defined
classification scheme and a set of apps manually classified
according to it, our system trains (using this set of apps as
training data) a classifier capable of automatically assign-
ing classes in the classification scheme to new, unseen apps.
We assume that each app can be assigned to one or more
classes, which make this an instance of multi-class multi-
label classification (“multi-class” referring to the fact that
there are more than 2 classes in the classification scheme,
“multi-label” referring to the fact that more than one class

1http://en.wikipedia.org/wiki/List_of_mobile_
software_distribution_platforms

585

can be attributed to the same app).
Classifying apps can be seen as a subtask of app discov-

ery2. Stores contain several hundred thousands apps, and
the process of searching for the desired app (i.e., the one
with the right functionality) is more complex than retriev-
ing simple textual documents. Supporting discovery with
classification is already employed by popular stores such as
the Apple Store and Google Play, which have recently ex-
panded their classification scheme to a richer set of classes
and subclasses3. Mobile apps and services for app discovery
are becoming popular. One example is Xyo4, which cre-
ates a stream of recommended apps; a user can navigate
through the stream, and each app description is enriched
with subclasses automatically assigned by Xyo. Appcrawlr5

is another service which makes use of machine learning and
NLP technologies in order to capture app genres and func-
tionality. All these developments in app discovery date back
to last year; this task is going to be central in the growth of
the stores, and the tools for classifying apps are consequently
becoming of key importance.

2. A SYSTEM FOR APP CLASSIFICATION

2.1 Crawling App Stores
The first step of the process consists in gathering the meta-
data of the mobile applications we are interested in. In this
work we focus on Android and iOS apps, disregarding for
the moment apps for the Windows Phone. The metadata
of a specific application can be retrieved from the Google
Play store6 or the Apple iTunes store7, depending on which
stores the app is published on. To access metadata of an
Android application, we use the open source Java library
‘marketapi’8. Given an Android application unique address
(e.g., the Gmail app address is com.google.android.gm),
the library, by querying Google servers, allows to quickly
retrieve the various metadata fields about the application
that are relevant for our purposes (see Section 2.2). In or-
der to retrieve metadata about iOS applications, we use
the public Apple service ‘Search API’9. This Web REST
API can be queried by submitting the unique application
ID (e.g., https://itunes.apple.com/lookup?id=5654554),
which results in a JSON response containing all metadata
related to that application. The JSON response can then be
easily analysed to extract all information of interest.

2.2 Content Extraction
App metadata are processed in order to extract features to
be fed to the learning algorithm. The metadata fields from
which we extract features are the following:

• Description: This field briefly presents the app, and
it usually lists its characteristics and functionality. This
information, expressed in natural language, is relevant
for our task not only because of the explicit clues it

2http://goo.gl/QvzBDx
3http://bit.ly/1xtFV7F
4http://goo.gl/07Q8Jy
5http://appcrawlr.com/app/technology
6https://play.google.com/store
7http://www.apple.com/itunes/overview/
8https://code.google.com/p/android-market-api/
9http://goo.gl/iYaIcA

provides (e.g., “IMAP e-mail client”), but also because
of the stylistic and genre-specific use of language that
can characterise some classes of apps (e.g., adventure
games are often described using an emotion-laden lan-
guage, while music-streaming apps often cite famous
artists’ names). We extract all the words contained
in the “description” field and perform “stop word re-
moval” (i.e., we remove content-neutral words such as
articles and prepositions) and“stemming”(i.e., we map
a word into its morphological root, so as to collapse
e.g., “computers” and “computational” into the same
feature).

• AppleClassScheme: We include the Apple Store class
assigned by the app developer as a feature. Each app
is assigned exclusively to one class (e.g., Business, Edu-
cation, Games, . . .) in the store, so this yields a single
feature whose value is the app’s class name.

• GoogleClassScheme: Similarly as for “AppleClassS-
cheme”, we include the Google Play store class assigned
by the app developer as a feature.

• Name: Given the name of an app, we extract all the
words contained in it and perform stop word removal
and stemming.

• AverageUserRating: User ratings define the quality
of an application, and they can be used as a clue, e.g.,
to detect scam applications; for instance, for an app
with a low AverageUserRating we might not want to
trust the developer-provided information in the Apple-
ClassScheme / GoogleClassScheme field. We extract
the average user rating of each application, and we de-
fine a numerical feature which takes values in the [0, 5]
interval, the greater the value the higher the rating.

It should be mentioned that we do not use the total
number of downloads as an additional feature, since
this number is known to be strongly correlated to av-
erage user ratings [1], and would thus likely represent
duplicate information.

• UserRatingCount: The number of user ratings de-
fines the popularity of an application. Together with
AverageUserRating this feature type represents user-
related information, as it quantifies the feedback an
app receives. Again, this is a single numerical feature
with positive integer values.

• FileSize: The app file size is an indicator of the com-
plexity of the application, so it seems a good feature
for discriminating apps with different targets of use
(e.g., the file size of games is usually large). Again,
this is a single numerical feature with positive integer
values (number of bytes).

We qualify all the features we extract by a prefix that in-
dicates which field the feature comes from, with the goal of
placing different emphasis on features coming from different
fields. For instance, word “maps” may have less importance
if it is extracted from the Description field (in which case it
is represented as DESCRIPTION:maps) and more importance
if it is extracted from the Name field (in which case it is
represented as NAME:maps).

586

We analyse, by means of the Language Detection library10,
each app description in order to determine the language it is
written in. For the purposes of this experimentation we dis-
card from consideration all apps whose description is deemed
not to be in English.

2.3 Feature Selection and Weighting
The feature extraction process described in Section 2.2 re-
turns a high number of features. For the dataset that we
use in the present work (see Section 3 for details), no less
than 50,371 features are generated from the 5,792 apps the
dataset consists of. In order to keep the computational ef-
fort to a more manageable level we perform feature selection
(FS). This latter consists in identifying a subset S ⊂ T of the
original feature set T (which coincides with the set of fea-
tures that occur in at least one training instance) such that
|S| � |T | and such that S reaches a compromises between
(a) the efficiency of the learning process and of the classi-
fiers (which is inversely proportional to |S|), and (b) the
effectiveness of the resulting classifiers. We perform feature
selection by (a) scoring each feature tk according to its esti-
mated contribution to discriminating class cj from the other
classes, and (b) retaining only the highest-scoring ones. As
the scoring function we use information gain, defined as

IG(tk, cj) =
∑

c∈{cj ,cj}

∑
t∈{tk,tk}

P (t, c) log2

P (t, c)

P (t)P (c)
(1)

Only the x features with the highest IG(tk, cj) value are re-
tained. We then adopt a“round robin”policy [2] in which the
n (internal and leaf) classes take turns in picking a feature
from the top-most elements of their class-specific orderings,
until x features are picked.

All the selected features are weighted by means of the well
known BM25 weighting function [4]. As the learning algo-
rithm we use support vector machines (SVMs), and more
specifically the implementation provided by the freely avail-
able libsvm software package11. Since libsvm requires fea-
tures to be numeric, we convert set-based features (such as
“AppleClassScheme” and “GoogleClassScheme”) into binary
ones. For instance, feature “AppleClassScheme” has 46 pos-
sible values, since the classification scheme used in the Apple
Store consists of 46 classes and each app is classified under
exactly one of them. We thus feed libsvm with 46 binary fea-
tures, each indicating whether the app has the corresponding
class or not. We train a binary classifier on each class of the
classification scheme. More than one classifier can return
a positive decision for the same app, i.e., this classification
task has a multi-label character. In libsvm we use a linear
kernel with the parameter C (the penalty of the error term)
set to 1; this configuration, while simple, achieves a good
trade-off between model complexity and effectiveness, and
is the default setting used in libsvm software.

3. EXPERIMENTAL SETTING
For our experiments we have used a classification scheme
and a dataset that were provided to us by a customer. Note
that we had no control on the design of the classification
scheme and on the choice of the dataset; we thus take both

10http://code.google.com/p/language-detection/
11http://www.csie.ntu.edu.tw/~cjlin/libsvm/ .

Table 1: Accuracy of classifiers obtained by using all
extracted features (Columns 2 to 4) or by using se-
lected features only (Columns 5 to 7). In Column 5,
percentages indicate the survival rate of the specific
feature type. Boldface indicates best results.

No Feature Selection With Feature Selection
#Features FM1 Fµ1 #Features FM1 Fµ1

Description 45652 0.219 0.878 14076 (30.8%) 0.229 0.880
AppleClassScheme 46 0.118 0.862 29 (63.0%) 0.048 0.816
GoogleClassScheme 38 0.128 0.853 30 (78.9%) 0.095 0.834

Name 4632 0.246 0.849 968 (20.9%) 0.187 0.826

All feature types 50371 0.311 0.895 15106 (30.0%) 0.320 0.895

as given12. The dataset consists of 5,792 app IDs classi-
fied according to a flat classification scheme consisting of 50
classes; each app belongs to 1 ≤ n ≤ 4 classes. The dataset
is very imbalanced, since a single class (“Games”) accounts
for 4,903 apps (84.6% of the total), while the other 49 classes
have just an average of 34.2 apps each. This makes learning
accurate classifiers for these 49 classes a difficult problem.

We perform feature selection and retain 30% of the origi-
nal features, bringing the original number of 50,371 features
to a more manageable number of 15,106 features.

As a measure of effectiveness that combines the contribu-
tions of precision (π) and recall (ρ) we use

F1 =
2πρ

π + ρ
=

2TP

2TP + FP + FN
(2)

where TP stands for true positives, FP for false positives,
and FN for false negatives. We average the class-specific F1

scores across the classes by computing both microaveraged
F1 (denoted by Fµ1) and macroaveraged F1 (FM1). Fµ1 is
obtained by (i) computing the class-specific values TPi, (ii)
obtaining TP as the sum of the TPi’s (same for FP and
FN), and then (iii) applying Equation 2. FM1 is obtained
by first computing the F1 values specific to the individual
classes, and then averaging them across the cj ’s.

4. RESULTS
Table 1 presents the results from our experiments; all results
were obtained by 10-fold cross-validation (10FCV).

A fact that emerges from the microaveraged results (Fµ1)
is that we have obtained very high accuracy for both the
NFS and WFS configurations. The macroaveraged results
(FM1) are lower, but this was to be expected in the light
of the severely imbalanced nature of the dataset. In fact,
the micro- and macro-averaged versions of a measure yield
the same value only when the dataset is perfectly balanced,
while the former yields higher values than the latter when
the dataset is imbalanced. In our case, the most frequent
class (Games) totals 4,902 instances while the least frequent
one (Tethering) has only 1 instance, which is an indication
of the severe level of imbalance of this dataset.

A second fact that emerges is that feature selection not
only does not harm accuracy, but even gives some marginal
accuracy improvements in terms of FM1 , which indicates that

12Unfortunately we have no rights on the data and on the
classification scheme, so we are not in a position to make
them publicly available.

587

many features that had originally been extracted are useless
for the classification process. Using feature selection is thus
a win-win approach, also due to the fact that the computa-
tional cost of both the learning and the classification phases
scale linearly with the number of features used [3].

4.1 Effects of Different Feature Types
In an attempt to better understand the quality of the fea-
tures contributed from each of the fields identified in Section
2.2, for each such field we have run experiments by using
the features extracted from that field only; the results are
reported in Table 1, each row representing a specific fea-
ture type. While these experiments do not account for the
subtle interactions that may take place as a result of the co-
presence of features of different types, they nonetheless give
an indicative idea of the relative contribution of the differ-
ent types. We have run such experiments (a) with the full
feature set (Columns 2-4 of Table 1), and (b) with the set
resulting from the feature selection process (Columns 5-7 of
Table 1). The feature selection process consisted in putting
into a common pool all the extracted features of all types,
and then selecting the best ones irrespective of their type,
so that different feature types compete with each other13.
In Column 6 we report, for each feature type, the survival
rate of a given feature type, i.e., the percentage of features
of that type that made it into the final selected set.

As expected, “All feature types” is the best setting overall,
i.e., no single feature type outperforms it. While this is true
for both measures, this is particularly evident for FM1 , both
in the NFS and WFS configurations, which indicates that
infrequent classes (which are the ones that get most atten-
tion from macroaveraged measures) need all bits of available
information in order to be correctly handled.

A second observation is that some individual feature types
deliver reasonably good accuracy by themselves. While some
of them produce good results for Fµ1 only (“AppleClassS-
cheme”and“GoogleClassScheme”), others (“Name”and“De-
scription”) provide fairly good values for both FM1 and Fµ1 .
“AppleClassScheme” and “GoogleClassScheme” provide in-
formation about the class assigned to the app in the corre-
sponding stores; this is clearly very useful semantic infor-
mation, especially for very popular classes (this should ex-
plain the very good micro accuracy obtained in the results).
“Name”features also perform well, and this is intuitive, since
authors tend to use highly significant words in app names.
That “Description” features are helpful is unsurprising too,
since the content of this field gives a very detailed informa-
tion about the aim and functionality of the application, i.e.,
it is the field where content is meant to be conveyed.

We do not include figures for the remaining feature types
(“AverageUserRating”, “UserRatingCount” and “FileSize”)
since, when used in isolation of the others, they turn out
to have no discriminatory power at all, since each of the
three classifiers generated out of them is the majority class
classifier (i.e., it always assigns Games and never assigns any
of the other classes).

13The three features AverageUserRating, UserRating-
Count, and FileSize, are exceptions, since Equation 1 dis-
criminates between presence and absence of the feature in
the app, and is thus unsuitable for features that have a
quintessentially numerical nature such as these. Since these
features are only three, we add them to the set of selected
features without subjecting them to the selection process.

4.2 Effects of Feature Selection
The results show that feature selection can globally improve
the accuracy of the classifiers on the infrequent classes.

The “Description” feature-specific classifier benefits from
feature selection. This feature type contains the majority of
features extracted from the dataset (45,652 out of 50,371), so
a reduction in the number of features is necessary to prevent
the problem of data overfitting.

For the “Name” feature type we observe a substantial cut,
due to the fact that many app names have an evocative
rather than a descriptive nature, and only few of them con-
tain terms related to the functionality of the application.
Some examples of useful app names, in terms of features,
are “Google Calendar”, “Jorte Calendar”, “Aviary Photo Ed-
itor”, “Photo Collage Editor”. After the cut, app with fancy
names cannot be classified with this only feature type, for
this reason we see a large drop in FM1 . The features related
to store classification schemes receive a smaller cut than for
“Names”features, but due to the uniqueness of these features
(only one classification scheme feature per app exists), some
apps are not more represented by these features after feature
selection. We thus see the same drop in effectiveness. This
happens because apps with store classes which are not dis-
criminating for our classification scheme (i.e., classes which
do not have a corresponding concept in our classification
scheme), cannot be classified because these features are cut
with high probability.

5. CONCLUSIONS
We have developed a system for the automatic classification
of mobile apps by genre, and we have evaluated experimen-
tally its effectiveness. We have found that the metadata re-
trieved from app stores is of fundamental importance in rep-
resenting the content of apps, but also that classification via
supervised learning is a difficult task. Accuracy is still less
than optimal; there are still large margins of improvement.
In the future we plan to explore further directions, among
which (i) adopting learning algorithms specifically devised
for extremely unbalanced datasets, (ii) exploring the use of
hierarchical classification schemes, and (iii) testing the use
of methods for the (semi-)automatic generation of additional
training examples.

6. REFERENCES
[1] A. Finkelstein, M. Harman, Y. Jia, F. Sarro, and Y.

Zhang. Mining app stores: Extracting technical,
business and customer rating information for analysis
and prediction. Technical Report RN/13/21,
Department of Computer Sciences, University College
London, London, UK, 2013.

[2] G. Forman. A pitfall and solution in multi-class feature
selection for text classification. Proceedings of ICML
2004, pages 38–45, Banff, CA, 2004.

[3] T. Joachims. Training linear SVMs in linear time.
Proceedings of KDD 2006, pages 217–226, Philadelphia,
US, 2006.

[4] S. Robertson. Understanding inverse document
frequency: On theoretical arguments for IDF. Journal
of Documentation, 60(5):503–520, 2004.

[5] H. Zhu, E. Chen, H. Xiong, H. Cao, and J. Tian.
Mobile app classification with enriched contextual
information. IEEE Transactions on Mobile Computing,
13(7):1550–1563, 2014.

588

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

